ASTRONOMISCHE RECHNUNGEN

a) MIT HILFE EINER
5 STELLIGEN LOGARITHMENTAFEL

b) MIT

TRINKS-TRIPLEX RECHENMASCHINE

A) DURCHFÜHRUNG EINER EPHEMERIDEN-RECHNUNG

Nachdruck wird gerichtlich verfolgt.

Durchführung einer

Aufgabe. Der Ort des Planeten 1920 HZ ist für den 16. November 1920 7 15 m. Gr. Zt. zu bestimmen.

Gegebene Elemente: $M = 351^{\circ}45'27,''712.$ Nov. 1920 12 m.Gr.Zt. $\omega = 55^{\circ}48'40,''6$ $\Omega = 21^{\circ}18'16,''3$ $i = 43^{\circ}26'37,''9$ $\varphi = 40^{\circ}46'37,''2$ $\mu = 256,''446$ a = 5,76334 $\varepsilon = 23^{\circ}26'58,''9$

a) Lösung mit Logarithmentafel.

 $e_0 = 37^0 42057$

1. Verbesserung von M vom 12. November 1920 12 m. Gr. Zt. für 16. November 1920 7 15 m. Gr. Zt.

$$M' = 351^{\circ} 45' 27,"7 + 256,"446 \cdot 3,8025.$$

$$\underline{256,446 \cdot 3,8025}$$

$$\underline{1282230}$$

$$512892$$

$$\underline{205 15680}$$

$$\underline{769 338}$$

$$975,1359150:60 = 16' 15,"14$$

$$\underline{M = 351^{\circ} 45' 27,"7}$$

$$\underline{M' = 325^{\circ} 1' 42,"8}.$$

b) Lösung mit Trinks-Triplex Rechenmaschine.

$$M' = 351,7577 + \frac{256,446 \cdot 3,8025}{3600} = \underline{352,02856}.$$
 Anlage 1.

Anmerkung: Addition, Multiplikation und Division werden gleichzeitig ausgeführt, die Maschine zeigt sofort den Wert für M'. 2. Errechnung von E nach der Keplerschen Gleichung $M'=E-e_0\cdot\sin E.$

Die Lösung ist logarithmisch nicht möglich, sie läßt sich nur mit Hilfstafeln auf sehr umständliche und zeitraubende Weise durchführen. Es ergibt sich dann:

$$E = 338^{\circ} \text{ 1' } 35,5^{\circ}$$

3. Ermittlung der wahren Anomalie v und der Entfernung r von der Sonne.

$$r \cdot \cos v = a (\cos E - e)$$

 $r \cdot \sin v = a \cdot \cos \varphi \cdot \sin E$.

$$v = 314^{\circ} 3' 50,"4$$
 $r = 2,27263$

Anmerkung: Es sind 7 Logarithmen und 1 Funktion aufzuschlagen, 2 Additionen und 3 Subtraktionen durchzuführen.

$$E = 338^{\circ} \text{ 1' } 35,5^{\circ} \sin E = 0,37418.$$

$$\tan y = \frac{\cos \varphi \cdot \sin E}{\cos E - e}$$

$$r = \frac{a (\cos E - e)}{\cos v}$$

$$E = 338^{\circ} \text{ i' } 35,"5 \qquad \sin = 0,374^{\circ} 8 \qquad \cos = 0,92736$$

$$\frac{e = 0,653^{\circ} 12}{\cos E - e}$$

$$\cos E - e = 0,274^{\circ} 24$$

$$\cos \varphi = 0,757^{\circ} 26$$

Anmerkung: Es sind 5 Funktionen aufzuschlagen, 1 Subtraktion ist durchzuführen.

4. Umwandlung der ekliptischen Elemente Ω , ω , i in Ω' , ω' , i' für den Aequator.

$$\sin \frac{i'}{3} \cdot \sin \frac{1}{2} (\Omega' - \sigma) = \sin \frac{1}{2} \Omega \cdot \sin \frac{1}{2} (i - \epsilon)
\sin \frac{i'}{3} \cdot \cos \frac{1}{2} (\Omega' - \sigma) = \cos \frac{1}{2} \Omega \cdot \sin \frac{1}{2} (i + \epsilon)
\cos \frac{i'}{3} \cdot \sin \frac{1}{2} (\Omega' + \sigma) = \sin \frac{1}{2} \Omega \cdot \cos \frac{1}{2} (i - \epsilon)
\cos \frac{i'}{3} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = \cos \frac{1}{2} \Omega \cdot \cos \frac{1}{2} (i + \epsilon)$$

$$\frac{\omega' = \omega + \sigma.}{= 10^{0} 39' 8,"2}$$

$$\frac{1}{1} (i + \varepsilon) = 33^{0} 26' 48,"4$$

$$\frac{1}{1} (i - \varepsilon) = 9^{0} 59' 49,"5$$

$$\omega = 55^{0} 48' 40,"6$$

$$\begin{array}{c} \log \sin \frac{1}{2} \Omega = 9,26681 \\ \log \cos \frac{1}{2} (i-\epsilon) = 9,99335 \\ \log \cos \frac{1}{2} \cdot \sin \frac{1}{2} (\Omega' + \sigma) = 9,26016 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,34633 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,34633 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,34633 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,98955 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos \frac{1}{2} \cdot \cos \frac{1}{2} (\Omega' + \sigma) = 9,91383 \\ \log \cos$$

Anmerkung: Es sind 10 Logarithmen aufzuschlagen; 4 Additionen und 2 Subtraktionen mehr durchzuführen als bei der maschinenrechnerischen Lösung.

$$\tan \frac{1}{2} (\Omega' + \sigma) = \frac{\cos \frac{1}{2} (i - \varepsilon)}{\cos \frac{1}{2} (i + \varepsilon)} \cdot \tan \frac{\Omega}{2}$$

$$\tan \frac{1}{2} (\Omega' - \sigma) = \frac{\sin \frac{1}{2} (i - \varepsilon)}{\sin \frac{1}{2} (i + \varepsilon)} \cdot \tan \frac{\Omega}{2}$$

$$\cos \frac{i'}{2} = \sin \frac{\Omega}{2} \cdot \frac{\cos \frac{1}{2} (i - \varepsilon)}{\sin \frac{1}{2} (\Omega' + \sigma)}$$

$$\omega' = \omega + \sigma.$$

$$\frac{1}{2} \Omega = 10^{\circ} 39' 8, 2 \sin = 0,18485 \quad \tan g = 0,18809$$

$$\frac{1}{2} (i + \varepsilon) = 33^{\circ} 26' 48, 4 \quad \sin = 0,55116 \quad \cos = 0,83440$$

$$\frac{1}{2} (i - \varepsilon) = 9^{\circ} 59' 49, 5 \quad \sin = 0,17360 \quad \cos = 0,98482$$

$$\frac{1}{2} (\Omega' + \sigma) = 12^{\circ} 31' \quad \sin = 0,21672$$

$$\frac{1}{2} (\Omega' + \sigma) = 3^{\circ} 23' 25''$$

$$\frac{\Omega'}{2} = 15^{\circ} 54' 25''$$

$$\sigma = 9^{\circ} 7' 35''$$

$$\omega = 55^{\circ} 48' 40, 6''$$

$$\omega' = 64^{\circ} 56' 15, 6''$$

$$\frac{1}{2} (32^{\circ} 51' 40'')$$

Anmerkung: Es sind 10 Funktionswerte der Tafel zu entnehmen, keinerlei Zwischenwerte zu notieren, die Maschine zeigt sofort das Resultat.

5. Berechnung der Aequator-Konstanten.

$$\begin{array}{l} \sin \ c_1 \cdot \sin \ C_1 = + \ \cos \ \Omega' \\ \underline{\sin \ c_1 \cdot \cos C_1} = - \ \underline{\sin} \ \Omega' \cdot \underline{\cos \ i'} \\ \underline{\sin \ c_2 \cdot \sin \ C_2} = + \ \underline{\sin} \ \Omega' \\ \underline{\sin \ c_2 \cdot \cos C_2} = + \ \underline{\cos} \ \Omega' \cdot \underline{\cos \ i'} \end{array}$$

$$0' = 15^0 45' 22,''9$$

 $i' = 65^0 43' 16''$

$$\begin{array}{c} \log \cos \Omega' = 9,98304 \\ \log \cos i' = 9,61403 \\ \log \sin c_2 \cdot \cos C_2 = 9,59707 \\ \log \sin \Omega' = 9,43786 \\ \log \tan C_2 = 0,15921 \\ \underline{C_2} = 34^043'31,"1 \end{array}$$

$$\log \sin \Omega' = 9,43786$$

 $\log \sin C_2 = 9,75560$
 $\log \sin c_2 = 9,68226$

Anmerkung: Es sind 7 verschiedene Logarithmen, 2 Additionen und 4 Subtraktionen erforderlich.

tang $C_1 = \frac{\cos \Omega'}{-\sin \Omega' \cdot \cos i'}$		$\sin c_1 = \frac{\cos \alpha'}{\sin C_1}$	Anlage 5.
tang $C_2 = \frac{\sin \Omega'}{\cos \Omega' \cdot \cos i'}$		$\sin c_2 = \frac{\sin \ \Omega'}{\sin \ C_2}$	
$\Omega' = 15^{0} 54' 25''$	sin = 0,27408	cos = 0,96171	
$i' = 65^{\circ} 43' 20''$		$\cos = 0,41116$	
$C_1 = 96^0 40' 59,"8$	$\sin = 0,99320$		
$C_2 = 34^0 43' 39''$	$\sin = 0.56968$	*	
$\sin c_1 = 0,96829$			
$\sin c_2 = 0.48111$			

Anmerkung: 7 Funktionen sind aufzuschlagen.

6. Berechnung des Sternortes.

 $\omega' + v = 19^0 \text{ o' 4,"I}$

 $i' = 65^{\circ} 43' 16''$

$$\begin{array}{lll} \rho \cdot \cos \delta \cdot \cos \alpha = r \cdot \sin \ c_1 \cdot \sin \ (C_1 + \omega' + r) - X \\ \rho \cdot \cos \delta \cdot \sin \ \alpha = r \cdot \sin \ c_2 \cdot \sin \ (C_2 + \omega' + v) - Y \\ \rho \cdot \sin \delta = r \cdot \sin \ i' \cdot \sin \ (\omega' + v) - Z \end{array}$$

$$\begin{array}{lll} \log r = 0,35653 & X = 0,579046 \\ \log \sin c_1 = 9,98600 & Y = 0,735013 \\ \log \sin c_2 = 9,68226 & Z = 0,318820 \\ C_1 + \omega' + v = 115^0 41' 6,"0 \\ C_2 + \omega' + v = 53^0 43' 37,"1 \end{array}$$

$$\begin{array}{c} \log \ r = 0{,}35653 \\ \log \ \sin \ c_1 = 9{,}98600 \\ \log \sin \ (C_1 + \omega' + \nu) = 9{,}95481 \\ \log = 0{,}29734 \\ Num = 1{,}9831 \\ X = 0{,}5790 \\ \rho \cdot \cos \ \delta \cdot \cos \ \alpha = 1{,}4041 \\ \end{array} \begin{array}{c} \log \ r = 0{,}35653 \\ \log \ \sin \ c_2 = 0{,}68226 \\ \log \ \sin \ (C_2 + \omega' + \nu) = 9{,}90645 \\ \log \ \sin \ (C_2 + \omega' + \nu) = 9{,}90645 \\ \log \ \sin \ (C_2 + \omega' + \nu) = 9{,}90645 \\ \log \ \sin \ (C_2 + \omega' + \nu) = 9{,}90645 \\ \log \ \cos \ \delta \cdot \sin \ \alpha = 9{,}94524 \\ \log \ \rho \cdot \cos \ \delta \cdot \sin \ \alpha = 0{,}1453 \\ \log \ \rho \cdot \cos \ \delta \cdot \sin \ \alpha = 9{,}16592 \\ \log \ \rho \cdot \cos \ \delta \cdot \cos \ \alpha = 0{,}14740 \\ \log \ \tan \ \alpha = 9{,}01852 \\ \end{array}$$

$$\begin{array}{l} tang \ \alpha = \frac{r \cdot sin \ c_2 \cdot sin \ (C_2 + \omega' + v) - Y}{r \cdot sin \ c_1 \cdot sin \ (C_1 + \omega' + v) - X} \\ tang \ \delta = \frac{r \cdot sin \ i' \cdot sin \ (\omega' + v) - Z}{r \cdot sin \ c_1 \cdot sin \ (C_1 + \omega' + v) - X} \cdot cos \ \alpha \\ \rho = \frac{r \cdot sin \ i' \cdot sin \ (\omega' + v) - Z}{sin \ \delta} \end{array}$$

Anlage 6.

Anmerkung: Es waren 8 Funktionen aufzuschlagen und 2 Zwischenresultate zu notieren.

log r = 0.35653	$\log \rho \cdot \cos \delta \cdot \sin \alpha = 9,16592$
$\log \sin i' = 9,95978$	log sin α = 9,01615
$\log \sin (\omega' + v) = 9,51268$	$\log \rho \cdot \cos \delta = 0.14977$
log = 9,82899	log cos δ = 0,98664
Num = 0,67452	$\log \rho = 0.16313$
Z = 0.31882	$\rho = 1,4559$
$\rho \cdot \sin \delta = 0.35570$	
$\log \rho \cdot \sin \delta = 9,55108$	
$\log \rho \cdot \cos \delta = 0.14977$	
$\log \tan \delta = 9,40131$	
$\delta = 14^{\circ} 8' 28,"8$	

Anmerkung: Es sind 15 Logarithmen aufzuschlagen, 4 Additionen und 6 Subtraktionen durchzuführen.

Erläuterung

für die Durchführung der Rechnung mit der Trinks-Triplex Rechenmaschine.

1. Die Verbesserung von M wird in der Weise durch- Anlage 1. geführt, daß die Minuten und Sekunden als Dezimale von Graden eingesetzt werden, und die Verbesserung dementsprechend in Graden errechnet wird. Damit ergibt sich die Gleichung

 $M' = 351,7577 + \frac{256,446 \cdot 3,8025}{3600}$

Der Wert von M = 351,7577 ist ganz links in die Maschine zu setzen, im rechten Teil die Verbesserung 256,446 · 3,8025 3600 zu errechnen und gleichzeitig zu M zu addieren. Mit Hebel 7-12 wird 256,446 eingestellt und mit Hebel 1-2 der Divisor 36. Um richtig zu addieren, muß die Verbesserung die gleiche Stellenzahl hinter dem Komma aufweisen, wie der mit 17 Stellen eingestellte Wert von M. 256,446 steht mit 9 Stellen im Einstellwerk, der Multiplikator 3,8025 müßte also 17-9=8 Stellen aufweisen, falls mit 3600 dividiert würde. Da jedoch nur 36 als Divisor eingestellt ist, darf der Multiplikator nur 8 - 2 = 6 Stellen haben.

Schlitten auf 6. Stelle, eine + Drehung, Komma für den in das Resultatwerk einzukurbelnden Multiplikator festlegen. 3,6 wird nunmehr in der im Schema angegebenen Weise in 3,8025 geändert; das linke Resultatwerk zeigt sodann den Wert für

$$M' = 352,02856.$$

Nachdruck wird gerichtlich verfolgt.

 $M' = E - e_0 \cdot \sin E$. Anlage 2. Da E unbekannt ist, wird die Gleichung umgestellt in $E = M' + e_0 \cdot \sin E$.

> M' wird mit 10 Stellen in die Maschine gebracht, da das Produkt e₀ · sin E 10 Stellen ergeben wird. e₀ = 37,42057 ist mit Hebel I-7 einzustellen und als Annährungswert $\sin E = \sin \varphi = 0.65312$ negativ einzukurbeln, da der sin im 4. Quadranten negativ ist. Als Resultat ergibt sich $327^{\circ},5884...$, während der verwandte sin E = 0,65312einem Winkel von nur ca. 3110 entspricht. Das Annährungsverfahren wird in der Weise fortgesetzt, daß E = 3300 angenommen und dementsprechend der im Umdrehungszählwerk stehende bisherige sin E ohne vorherige Löschung in 0,50000 umgekurbelt wird. Als Resultat ergibt sich unter dieser Annahme 333°,318 Es wird $E = 335^{\circ}$ angenommen, sin E = 0,42262 umgekurbelt und als Resultat 3360,213 erzielt. Weiter

> Annahme E = 3380, sin E = 0,37461 umkurbeln, Resultat 3380,01044.... " $E = 338^{\circ} I'$, " E = 0.374343380,02054 $E = 338^{\circ} 2'$, " E = 0.37407 " 3380,03065

> Bei 3380 1' 35" ist die Uebereinstimmung erreicht, der Wert für E damit festgelegt.

3. Die Formeln der logarithmischen Rechnung werden nach Anlage 3. v und r entwickelt und ergeben dann

tang v =
$$\frac{\cos \varphi \cdot \sin E}{\cos E - e}$$

r = $\frac{a \cdot (\cos E - e)}{\cos v}$

Um die Multiplikation und Division auf schnellstem Wege gleichzeitig durchzuführen, wird in der ersten Formel $\cos \varphi = 0.75726$ mit Hebel 15-10 und der Divisor cos E - e = 0,27424 mit Hebel I - 5 eingestellt. Nach der ersten + Drehung ist das Komma für beide Werte im Resultatwerk festzulegen. Durch weitere Drehungen wird der rechts im Resultatwerk stehende Divisor cos E-e in

den Wert für sin E = 0,37418 geändert. Nach Verschiebung des Schlittens auf die 2. Stelle greifen die Zahlen des zu errechnenden Wertes von tang v im linken Teil des Resultatwerkes an der 11. Stelle in den einzukurbelnden Wert von sin E ein. Da jedoch die ersten 3 Stellen hinter dem Komma (0,374) bereits mit dem einzustellenden Werte von sin E in Uebereinstimmung gebracht sind, kann dieses Ineinandergreifen der Zahlen unberücksichtigt bleiben, es ist nur zu beachten, daß das Endresultat tang v nur bis zur 7. Stelle hinter dem Komma absolute Genauigkeit aufweist. (Im Schema sind die ungenauen Zahlen durch kleineren Druck gekennzeichnet.)

Da sin E negativ, cos 9 und cos E-e aber positiv sind, ergibt sich im linken Teil des Resultatwerkes

tang
$$v = -1,03322$$
, $v = 314^{\circ}3'50''$

Zur Errechnung von r wird in genau derselben Weise a = 5.76334 mit Hebel 9-14, der Divisor cos v = 0.69545 mit Hebel 1-5 eingestellt und der Multiplikator cos E-e=0,27424 nach Festlegung des Kommas im rechten Teil des Resultatwerkes mit 0,69545 eingekurbelt. Ergebnis im linken Teil des Resultatwerkes

$$r = 2,27268$$

4. Wie unter 3 sind die Formeln der logarithmischen Rechnungsart nach den verlangten Größen hin zu entwickeln und ergeben dann

a)
$$\tan \frac{1}{2} (\Omega' + \sigma) = \frac{\cos \frac{1}{2} (i - \varepsilon)}{\cos \frac{1}{2} (i + \varepsilon)} \cdot \tan \frac{\Omega}{2}$$
$$\tan \frac{1}{2} (\Omega' - \sigma) = \frac{\sin \frac{1}{2} (i - \varepsilon)}{\sin \frac{1}{2} (i + \varepsilon)} \cdot \tan \frac{\Omega}{2}$$

b)
$$\cos \frac{i'}{2} = \sin \frac{\Omega}{2} \cdot \frac{\cos \frac{1}{2} (i-\epsilon)}{\sin \frac{1}{2} (\Omega' + \sigma)}$$

zu a) Die Lösung erfolgt am schnellsten in der unter 3 angegebenen Weise bei gleichzeitiger Multiplikation und Division. Zur Errechnung von tang $\frac{1}{2}(\rho' + \sigma)$ ist $\cos \frac{1}{2}(i-\epsilon) = 0.98482$ mit Hebel 10—15, $\cos \frac{1}{2}$ (i+ ϵ) = 0,83440 mit Hebel 1—5 einzustellen und nach Feststellung des Kommas im Resultatwerk tang $\frac{\Omega}{2}$ = 0,18809 im rechten Teil mit 0,83440 einzukurbeln.

Resultat: tang $\frac{1}{2}(\Omega' + \sigma) = 0,221998$

Dementsprechend ist bei der Formel für tang $\frac{1}{2}$ ($\Omega' - \sigma$) mit Hebel 10—15 sin $\frac{1}{2}$ ($i-\epsilon$) = 0,17360, mit Hebel 1—5 sin $\frac{1}{2}$ ($i+\epsilon$) einzustellen und mit diesem Werte nach Festlegung des Kommas der Wert für tang $\frac{\Omega}{2}$ = 0,18809 im rechten Teil des Resultatwerkes einzukurbeln.

Resultat: tang $\frac{1}{2}(\Omega - \sigma) = 0.059242$

zu b) Genau wie vorher ist $\sin \frac{\Omega}{2} = 0.18485$ mit Hebel 10—15, $\sin \frac{1}{2} (\Omega' + \sigma) = 0.21672$ mit Hebel 1—5 einzustellen und mit letzterem $\cos \frac{1}{2} (i - \epsilon) = 0.98482$ im rechten Teil des Resultatwerkes einzukurbeln. Der linke Teil zeigt als Wert für $\cos \frac{i'}{2} = 0.839995$

Anlage 5.

16

 Nach Entwicklung der Formeln für die logarithmische Lösung nach den verlangten Größen hin ergibt sich

a)
$$\tan C_1 = \frac{\cos \Omega'}{-\sin \Omega' \cdot \cos i'}$$

Der Divisor — sin Ω' cos i' ist im rechten Teil der Maschine in der Weise zu errechnen, daß cos i' mit Hebel I—5 eingestellt und sin Ω' an 5.—I. Stelle im Umdrehungszählwerk eingekurbelt wird. Sodann wird der Dividend cos $\Omega' = 0.96171$ ganz links in die Maschine eingesetzt und der im rechten Teil des Resultatwerkes stehende Divisor — sin Ω' cos i' = 0.1126907328 mit Hebel I—10 eingestellt. Die Löschung des Divisors im Resultatwerk erfolgt zweckmäßig durch eine Minusdrehung, um gleichzeitig die richtige Hebeleinstellung zu kontrollieren. Die nun durchzuführende Division bringt das Resultat in das Umdrehungszählwerk, das unter Berücksichtigung der Vorzeichen negativ ist.

tang
$$C_1 = -8,534064$$
, $C_1 = 96^0$ 40' 59",8

Die Lösung erfolgt genau wie unter a. Zuerst den Divisor $\cos \Omega' \cdot \cos i' = 0.3954166836$ errechnen, den Dividend $\sin \Omega' = 0.27408$ links einsetzen und die Division nach Umstellung des Divisors durchführen. Resultat:

tang
$$C_2 = 0,693142$$
 , $C_2 = 34^0 43' 39''$

c)
$$\sin c_1 = \frac{\cos \alpha'}{\sin C_1} = 0.96829$$

Einfache Division, die auf üblichem Wege durchzuführen ist.

d)
$$\sin c_2 = \frac{\sin \alpha'}{\sin C_2} = 0.48 \text{rm}$$

Wie unter c.

6. Die den verlangten Größen entsprechend entwickelten Anlage 6. Formeln ergeben

a)
$$\tan \alpha = \frac{r \cdot \sin c_2 \cdot \sin (C_2 + \omega' + v) - Y}{r \cdot \sin c_1 \cdot \sin (C_1 + \omega' + v) - X}$$

Es ist zuerst der Wert unter dem Bruchstrich zu errechnen. r=2,27268 mit Hebel I—6 eingestellt und sin $c_1=0,96829$ im Umdrehungszählwerk an I.—5. Stelle eingekurbelt ergibt $r\cdot\sin c_1=2,2006133172$. Diesen Wert mit Hebel I—II einstellen, durch eine Minusdrehung richtige Einstellung kontrollieren und dadurch gleichzeitig Resultatwerk löschen. Multiplikation mit sin $(C_1+\omega'+v)=0,90119$ dadurch ausführen, daß dieser Wert in das Umdrehungszählwerk in Stelle I—5 eingekurbelt wird. Von dem Resultat 1,983170715327468 ist X zu subtrahieren. Dazu Komma unter Komma, X mit Hebel 6—II einstellen und an 4. Stelle eine Minusdrehung. Das Zwischenresultat 1,404124715327468 ist niederzuschreiben.

In gleicher Weise wird der Wert über dem Bruchstrich r·sin c₂·sin (C₂+.\overline{\psi}+\psi)-Y=0,146515264285256 errechnet, nunmehr der vorher errechnete und notierte Divisor 1,404124715 mit Hebel 1—10 eingestellt und die Division durchgeführt. Im Umdrehungszählwerk erscheint dann der Wert für

tang
$$\alpha = 0.104347$$
; $\alpha = 0^h 23^m 49.7$

$$b) \ tang \ \delta = \frac{r \cdot \sin i' \cdot \sin \left(\omega' + v\right) - Z}{r \cdot \sin c_1 \cdot \sin \left(C_1 + \omega' + v\right) - X} \cdot \cos \alpha.$$

Der Wert unter dem Bruchstrich ist bereits unter a errechnet, der über dem Bruchstrich wird gleichartig festgelegt. $r \cdot \sin i' \cdot \sin (\omega' + v) - Z = 0.355699652426672$ für die spätere Errechnung von ρ niederschreiben, den Divisor $r \cdot \sin c_1 \cdot \sin (C_1 + \omega' + v) - X$ einstellen, die Division durchführen. Der Quotient 0.253325 erscheint im Umdrehungszählwerk. $\cos \alpha = 0.99460$ mit Hebel I—5 einstellen, das Umdrehungszählwerk ohne vorherige Löschung auf 0 kurbeln. Resultat:

tang
$$\delta = 0.251957$$
; $\delta = + 14^{\circ} 8' 31''$.

c)
$$\rho = \frac{\mathbf{r} \cdot \sin i' \cdot \sin (\omega' + \mathbf{v}) - \mathbf{Z}}{\sin \delta}$$

Der unter b bereits festgelegte Wert für $\mathbf{r} \cdot \sin \mathbf{i'} \cdot \sin (\omega' + \mathbf{v}) - \mathbf{Z} = 0,35569965242$ wird in das Resultatwerk eingesetzt, $\sin \delta = 0,24432$ mit Hebel I-5 eingestellt und die Division durchgeführt. Resultat:

$$\rho = 1,455876$$

Es sind zur Durchführung der gesamten Rechnung mit Ausnahme der Lösung der Keplerschen Gleichung erforderlich:

Logarithmische Lösung Mit Trinks-Triplex

Logarithmen		39	_	
Winkelfunktionen .		I	31	
Additionen	4	15	3	
Subtraktionen		19	3	
Multiplikationen .		2	I	
Divisionen		3	2	1
Summe .		79	40	Ī

ASTRONOMISCHE RECHNUNGEN

a) MIT HILFE EINER

5 STELLIGEN LOGARITHMENTAFEL

b) MIT

TRINKS-TRIPLEX RECHENMASCHINE

B) PLATTEN-REDUKTION

Nachdruck wird gerichtlich verfolgt.

Platten-

Aufgabe.

Für den Stern BD $+ 27^{\circ},3623$ ist α und δ zu bestimmen.

Oxford phot.
$$+28,58945$$
 Mitte $\alpha_0 = 20.6$ $\delta_0 = +28^\circ$
 $\xi = 7,422$ A = $+0,00788$ C = $-0,42060$. E = $+0,00787$
 $\eta = 7,289$ B = $+0,00368$ D = $-0,00350$. F = $-0,05310$ $v_2 = +0,0009$ $v_3 = +0,0009$ $v_4 = +0,0009$ $v_4 = +0,0009$ $v_5 = +0,0009$ $v_6 = +0,0009$ $v_7 = +0,0009$ $v_8 = +0,0009$ $v_8 = +0,0009$ $v_8 = +0,0009$ $v_9 = +0,0009$

a) Logarithmische Lösung.

	100 F 1400 150 150 150 150 150			7,422 . 788.
ξ =	7,422	$\eta =$	7,289	59376 59376
_	- 13,000	_	- 13,000	51954
	- 0,0585		- 0,0260	0,05848536,
	- 0,0268	and a	- 0,0574.	7,289 - 368.
6.200	100 00	2.2		58312 43734
C = +	- 0,4206	$\mathbf{r} = \pm$	- 0,0531.	21867
x = -	- 5,2427 · 5.	y = -	- 5,6893 · 5.	0,02682352.
	- 26,2135.	v = -	- 28,4465.	7,422 - 350,
	- 0,0005	450	- 0,0006	371100 22266
2.000			CONTRACTOR OF THE PERSON AND THE PER	0,02597700.
$v_2 = +$	- 0,0009	Y = -	- 28′,4459.	7,289 - 787.
X = -	-26',2121	=-	- 0° 28′ 26″,754	51013 58312
	00 26' 12",726	$\sigma = +$	- 27° 31′ 33″,25	51013
037-7527-	0 20 12 1/20	-		0,05735433.
log tan	gX = 7	88218	$\log \sin g = 9,6$	6478
log cos	g = 9	94783	$\log \cos x = 9.9$	9999
	$g\left(\alpha-\alpha_0\right)=7,$	Company of the Compan	$\log \sin \delta = 9,6$	6477
		m s		
	$\alpha - \alpha_0 = -$	- 1 50,23		
	20	h m s		-0 01/ 00//
	$\alpha = 20$	4 1,77	o = +2	70 31' 30"

Nachdruck wird gerichtlich verfolgt.

Reduktion.

$$\begin{array}{lll} v_1 = + \text{ 0,0005} & v_3 = + \text{ 0,0006} \\ v_2 = + \text{ 0,0009} & (v_1, v_2, v_3 \text{ sind Tabellenwerte für} \\ \sin \delta = \sin g \cdot \cos X \\ g = \delta_0 + y \\ y = [(\eta - \text{I3}) - D\xi - E\eta - F] \cdot 5. \end{array}$$

b) Maschinenrechnerische Lösung.

$$\begin{array}{lll} X = & -26',2121 & Y = & -28',4458 & \text{Anlage 7.} \\ = & -0^0 \ 26' \ 12'',726 & = & -0^0 \ 28' \ 26'',748 & \\ \tan g = & 0,00763 & g = & +27^0 \ 31' \ 33'',25 & \\ \cos = & 0,99997 & \sin = & 0,46215 & \\ \cos = & 0,88680 & \\ \alpha - \alpha_0 = & -1 \ 58,2 & \\ \alpha = & 20 \ 4 \ 1,8 & \delta = & +27^0 \ 31' \ 30'',2 & \end{array}$$

TRINKS-BRUNSVIGA-RECHENMASCHINE

Erläuterung der maschinenrechnerischen Lösung.

Anlage 7.

1.
$$x = [(\xi - 13) - A \xi - B \eta - C] \cdot 5$$

 $X = x + v_1 + v_2$

Da die Produkte A ξ und B η hinter dem Komma 8 Stellen ergeben, wird ξ mit gleicher Stellenzahl in die Maschine gesetzt. 7,422 mit Hebel 6—9 einstellen, eine + Drehung und Komma festlegen. 13 unter Berücksichtigung des Kommas mit Hebel 9—10 einstellen; eine Minusdrehung ergibt 9994,422, das ist die dekadische Ergänzung von —5,578.

 $\xi=7,422$ mit Hebel I-4 einstellen und mit A=0,00788 negativ (durch Minusdrehungen) einkurbeln, ebenso $\eta=7,289$ einstellen und mit B=0,00368 negativ einkurbeln. C ist unter Berücksichtigung der Stellenzahl im Resultatwerk mit Hebel 4-8 einzustellen und in Anbetracht seines negativen Vorzeichens zu dem negativen Werte zu addieren. Im Resultatwerk steht nunmehr 9994,75729112 oder aber -5,24270888.

Dieser letztere Wert ist mit Hebel I-9 einzustellen, die richtige Einstellung durch eine + Drehung zu kontrollieren und damit das Resultatwerk gleichzeitig zu löschen. Die Multiplikation mit 5 ergibt dann x = -26,21354440.

Unter Berücksichtigung des Kommas ist $v_1 + v_2 = 0,0014$ einzustellen und in Anbetracht des Minuswertes von x zu subtrahieren. Es zeigt das Resultatwerk

$$X = -26,21214440$$
 oder $-26,12,726$
2. $y = [(\eta - 13) - D \xi - E \eta - F] \cdot 5$
 $Y = y + v_3$

Die Lösung erfolgt wie unter I, es ist

$$Y = -28,44583715$$
 oder $-28,26,748$.

3.
$$g = \delta_0 + Y = +28^0 + (-28'26',748)$$

Die Ausführung der Rechnung erfolgt bei ihrer Einfachheit im Kopfe.

$$g = + 27^{\circ} 31' 33''_{,25}$$

$$\tan g (\alpha - \alpha_{o}) = \frac{\tan g X}{\cos g}$$

$$\sin \delta = \sin g \cdot \cos X$$

Einfache Division, bezw. Multiplikation, die auf bekannte Weise zur Ausführung kommt.

tang
$$(\alpha - \alpha_0) = 0.008603$$

$$-1^{m} 58.2$$

$$\alpha = 20^{h} 4^{m} 1.8$$
tang $\delta = 0.46213$

$$\delta = +27^{o} 31^{'} 30^{''}.2$$

Während für die logarithmische Lösung 6 Logarithmen und 14 schriftliche Nebenrechnungen erforderlich sind, werden für die Ausführung mit der Trinks-Triplex Rechenmaschine nur 6 Winkelfunktionen benötigt.

	Einstellhebel	Erläuterungen	T					gszäh									hlit									Resu			
20 19 18 17 10	6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	Dinaterages	1:	2 11	10	9 8	7	6 5	4	3	2	1 2	0 19	9 18	17	16	15	14	13 1	2 1	1 10	9	8	7 (5 5	4	3	2	1
3 5 T, 7 5	5 7 6 9	M einsetzen										ī	3 5	5 1	, 7	5	7	6	9	+	1				-	-			
	2 5 6, 4 4 6 3 6	$357,75769 + \frac{256,446 \cdot 3,8025}{3600} =$		-			+	I	+	H		+	3 5	5 2	, 0	I	4	I	3	6	+		+	3,	6	+	+		
		352,02856	-	+		+	+	1	+	+					, 0						5			3,		6			
	2 5 6, 4 4 6 3 6	A MOUNT AND THE PARTY OF THE PA	-	+	++		+	-	-	-					, 0							Ι.				8 0			
	2 5 6, 4 4 6 3 6	Gleichzeitige Multiplikation, Division und Addition	1	-			-	1 0	-		H	+	3 3	0 -	, 0	2	8	1	3	6	7	6				0 1			
	2 5 6, 4 4 6 3 6	una Addition	-	+	+-	+	+-	-	5	-			3 :	5 4	, 0	2	ρ	4	9	Ω	2 6	-	2	3,	8	0 2	2 2	2	0
	2 5 6, 4 4 6 3 6			1	-		-	1 (5	6	2		3 5	5 2	, 0	2	0	5	4		0	3	-	3)	Ω	0 2	3	-	0
	2 5 6, 4 4 6 3 6	54.53			Н		-	1	0 5	6	2	5	3 .	5 2	2, 0	2	0	5	0	1	0 0	7	5	31	0	0 2	5	-	0
									1	_			_	+	+	-			-	-	+	+	H	-	-	+	+		
													_	_	_	-				+		4		-		-	-	-	
																				1	1				1		-	-	
																						_							
									-																				
					1	П	1	\Box		T								10-11											
		1			+	\forall	+	11				П		1															
+++++	+++++++++++++++++++++++++++++++++++++++			1	+-	+	+	\forall		+	+	П		+															
	+++++++++++++++++++++++++++++++++++++++				+	\forall			+	+			1	+	-	+	-									1			
			-		-	H	+	+	-	+	-	H		+	+	+					+	T		6		1		T	
					+	+	+	+	-	+	-			+	+	+	-		1		-	+	+			1	1		
			-			1						home	Name of Street						-			-						D. R	. G. M.

Aufgabe: Verbesserung an M

$$M' = 351,^{0}75769 + \frac{256,446 \cdot 3,8025}{3600} = 352,02856$$

$$\begin{aligned} M &= 351,75769 \\ \mu &= 256,446 \end{aligned}$$
 Zwischenzeit = $3^d 19^n 15^m = 3,^d 8025$

Einstellhebel Erläuterungen				1	Umdi	ehun	gszäł	ilwe	rk					Schl	itten				L. S.			R	Resul	tatv	verk	
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1		1	2 11	10	9 8	7	6	5 4	1 3	2	1	0 19	18 17	16 15	14	13 1	2 11	10	9	8	7 6	5	4	3	2 I	
3 5 2, 0 2 8 5 6 M' einsetzen.	1+						ī		T			T				3	5 2	, 0	2	8	5 6	5				
$37,42057$ $M'+e_0 \cdot \sin E$.	-	-					0,	5 5	3	1	2					3	2 7	, 5	8	8	4 3	3 7	3	2	1 (5
e ₀ · sin E ist zu subtrah	ieren,																									
da E im 4. Quadranten	liegt,																									
sin E negativ ist.																										
3 7, 4 2 0 5 7 E = 330° sin = 0	,50000 _	1					0,	5 0	0	0	0				-	and the same	-	-	-	_	_	-	-	-	0 (
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,42262 —	-	1			_	0,	4 2	2 2	6	2				_		-								6 6	.1177.7
3 7, 4 2 0 5 7 E = 338° sin = 0	,37461	-	1				0,	3 7	7 4	. 6	1				-	_		_	1	_	_	_			2 3	-
3 7, 4 2 0 5 7 E = 338° 1′ sin = 0	- 37434	-	4				0,	3 ′	7 4	1 3	4	_			-	-	-	_	-	-	_	_	-		6 :	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-	1				0,	100		_					_	-	_	_	-	-	_	****	-	_	0	
3 7, 4 2 0 5 7 E = 338° 1′ 40″ sin = 0	140000		_		+	1	0,					-	-			-	-	-		-					8 8	
3 7, 4 2 0 5 7 E = 338° 1′ 30″ sin = 0		-	4	H			0,		_	_	1 1	-	-	-	-	-	-	-	1	-	_	-	-		0	
$3 7, 4 2 0 5 7 E = 3380 1'35'' \sin = 0$,37418 _	-			+	+	0,	3 3	7 4	I	8	+				3	3 8	5, 0	2	6	5	3 1	I	I	7	4
	-	+	+		+	+	+	+	+	+	Н	+	-	-	-	+	+	+	Н	+	+	+	+			
	-	+	+	0 1	+	+	-	+	+		Н				+	- 12	+	+	Н	+	+	+	-			
Die mit – bezeichneten	Zahlan —	+		-	+	+		+	+	+	Н				H	+	+	+	Н		$^{+}$	+	+			
sind nach ausgeführter Re-		-	+			1	+	-	+	+			+		++	+	+				+	+	+			77
zu löschen.	_	+	+							+	H		+		11	+	+					+	-			
	-		+	-			H				H				\forall	+	+									
							A' =		2 30	- 20	1 0			in φ =	1		0000		1					D	. R. G	. м.

Aufgabe: Keplersche Gleichung.

$$M'=E-e_0\cdot sin\; E.$$

$$E = M' + e_0 \cdot \sin E$$
.

$$M' = 352^{\circ}, 02856.$$

$$\sin \varphi = 0,65312.$$

$$e_0 = 37^0, 42057.$$

0,37418

0,75726

0,27424

5,76334

۱						Ei	nste	llhe	ebe.	I							Erläuterungen				Umdr	ehung	gszäh	lwerk	•					Sc	hlitt	ten							Re	sulta	twe	rk
	20 1	9 18 1	17 16	15	14	13 1	2 11	IC	9	8	7	6 5	5 4	1 3	2	1	- Indiana		12	1 10	9 8	7	6 5	4	3	2 1	20	19 1	8 17	16	15 1	4 13	12	II	10	9 8	7	6				
												ō, 7	7 5	5 7	2	6	cos φ·sin E	+					ō, 3					T	T							T			T	5 4		17
																	cos φ·sin E cos E — e												T								T					Ť
		\Box	1	Ц	1		1		_		-	0, 2	2 7	7 4	. 2	4	cos E — e	_					1, 0	3	3	2 2								о,	0 0	0	o	o	1	2 9	4	C
		+	+	0,	7	5 2	2	6	-		+	0, 2	2 7	7 4	2	4	Oder durch gleichzeitige Multi-	+	-	+	-	\mathbf{H}	1	H	+	-		-	-		6	+		_	-	+	-			-		
		+	+	H	+	1		1	+			-/-	1	1 31	+	7	plikation und Division	1	+	+-	-			Н	+	+	-		_	2	_	+		-	2 7	_	_	-			-	
ŀ	+	+	+	+	+	+	+	+	+	\vdash	+	+	+	1	+	-			-	+	-	1	1 3	+		+			_	4 ;	_			-	-	-	-		-	0 0	-	
ŀ	+	++	+	H	+	-	+	-	-	H	+		+	+	+	- 8	cos φ · sin E cos E — e				_	-	1 3	-	-	-	-	_	-	8	_	_		_	_	_	-		_	4 0		2 102
ļ	+	++	+		-	+	+	-	-	Н	-	_	-	+	-	-	cos E — e			1			1 3	6	4	\perp				9	_	_	_	_			_	-	_	_	market and a	
L		1	+		_	1	-		-		_	1	_	1									_	6	-		Ι,															
-	+	H	+	\vdash	+	+	-	-			+	+	+	+	-	\parallel			4	1	1		1 3	6	4	4 2	Ι,	9 3	3	2 :	2 0	6	8	9	5 7	4	1	7	8	5 4	. 0	8
-			+	:	5, 7	7 6	3	3	4		-	0, 6	9	5	4	5	$\frac{\mathbf{a} \cdot (\cos \mathbf{E} - \mathbf{e})}{\cos \mathbf{v}}$	+			+		3 9	4	3 3	3 5	2, :	2 7	2	6 8	3 6	6	8	1	6 4	2	4	0	2	7 5	7	5
t	+	\forall			+	\dagger	†		-		+		+	+			Die mit – bezeichneten Zahlen		+	+	+	Н	+	H	+	+	\vdash	+		+	+	+	\vdash	+	+	+			+	-	-	-
ı		++	1		+	+	+		H		+	+	+	+	H	H	sind nach Durchführung der		-	+	+	-	+	H	- 23	+	\vdash	+		+	+	-	H	+	+		-		-	-	-	
					1												Rechnung zu löschen.					1	\dagger		+		\parallel			+				+		-		+	+	+		
	-	1	+		-							-		-					1						I		-															
			+		+	+	+				+	+	+	-					+		+	1	-		+	+				+	+	-		1	+	8			-	-	-	
r			1		1	1					1		\top	1		_					+		-	-	-	+	+	-		+	+	-	-	+	+				-	-	-	

Aufgabe: Errechnung von v und r.

tang
$$v = \frac{\cos \phi \cdot \sin E}{\cos E - e} = 1,03322$$
. $v = 314^{\circ} 3' 50''$ $\cos = 0,69545$.
$$v = \frac{a \cdot (\cos E - e)}{\cos v} = 2,27268$$

$$E = 338^{\circ} \text{ i' } 35'',5$$
 $\sin = -0.374^{\circ} 18 \frac{31'}{31'}$

$$\cos \varphi = 0,75726$$
 $\cos E - e = 0,27424$
 $54'25''$

$$\cos E - e = 0,27424$$

$$a = 5,76334$$

48' 40," 6 56' 15," 6

Einstellhebel Erläuterungen				ι	Jmdr	ehun	gszä	hlw	erk							Sc	hlit	ten								Res	sulta	twe	k	
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1		12	2 11	10	9 8	3 7	6	5	4	3 3	2 1	20	19	18	17	16	15	14 1	3 1:	2 11	10	9	8	7	6	5	4 3	2	I	
	+					Г		2	2	5 4	4 2	2 0	, 2	2	1	9	9	8	1 2	2 4	5	8	8	0	9	0	4 4	8	o	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									Ĭ										1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	-		-	+	-		2	4	T S	2 6	5 0	0	5	0	2	4	2 .	+		т	8	8	0	8	8	8 6	5 T	6	
$\frac{ 0, 1 }{\sin \frac{1}{2}} \frac{(i-\epsilon)}{(i+\epsilon)} \cdot \tan \frac{\Omega}{2}$					+	T		3	7	-	+	1=		5	2	Ť	T .		7	1	Ť	Ť								
$\frac{2'-6}{2} = 3^0 \ 23' \ 25''$					1	T		T			1	Ī	1						T	1		T								
0, 1 8 4 8 5 0, 2 1 6 7 2 $\sin \frac{\Omega}{2} \cdot \frac{\cos \frac{1}{2} (i - \epsilon)}{\sin \frac{1}{2} (\Omega' + \sigma)}$ $= 0.83999$	+					1	4	5	4	4 :	2 0	0	, 8	3	9	9	9	5	3 7	, 0	9	8	4	8	1	9	0 2	4	0	
= 0.83999.		-		+	+	+		+	+	+		-	+-	H		+	+		+	+	+	+				-	-	-		-
$\frac{i'}{2} = 32' 51, 40''$		-	-		+	+		+	+		-	1	+	H				8	+	+	-		- 12			+	+	-		
		+			$^{+}$	+		+	+	-0	+		t			1	+	+		t	t	H						+		
						T							T								T	T								
		-	_		+	1		-	+	+		_	-	_			4	+	0	-	-	1						-		
	-	+	+	-	+	+	H	+	+	+	+	+	-	+	-		+	+			+	+				+	-	+		
		+	+		+	+		+	- 31	+			100	-	-		+	+	+		-	+						-		
	77.	+	-		+			+	+	+			+				+	+	+			T								-
											1		T					1	1							1				
6 - h - Umwandhung dar aklintischen Flemente a i und w im a' i' und w' f			5000	78. 40.5 %		and made																				w 1	a			

If gabe: Unwandlung der ekliptischen Elemente Ω , i und ω im Ω' , i' und ω' für den Aequator.

a) $\tan g \frac{\Omega' + \sigma}{2} = \frac{\cos \frac{1}{2} (i - \varepsilon)}{\cos \frac{1}{2} (i + \varepsilon)} \cdot \tan g \frac{\Omega}{2}$ b) $\cos \frac{i}{2} = \sin \frac{\Omega}{2} \cdot \frac{\cos \frac{1}{2} (i - \varepsilon)}{\sin \frac{1}{2} (\Omega' + \sigma)}$

a)
$$\tan \frac{\Omega' + \sigma}{2} = \frac{\cos \frac{1}{2} (i - \epsilon)}{\cos \frac{1}{2} (i + \epsilon)} \cdot \tan \frac{\Omega}{2}$$

b)
$$\cos \frac{i}{2} = \sin \frac{\Omega}{2} \cdot \frac{\cos \frac{1}{2} (i - \epsilon)}{\sin \frac{1}{2} (\Omega' + \sigma)}$$

$$\tan g \frac{\Omega' - \sigma}{2} = \frac{\sin \frac{1}{2} (i - \varepsilon)}{\sin \frac{1}{2} (i + \varepsilon)} \cdot \tan g \frac{\Omega}{2}$$

c)
$$\omega' = \omega + \sigma$$

$$\frac{\Omega}{2} = 10^{0} 39' 8'', 2 \quad \sin = 0,18485 \quad \tan g = 0,1880$$

$$\frac{1}{2} (i + \epsilon) = 33^{0} 26' 48'', 4 \quad \sin = 0,55116 \quad \cos = 0,83440$$

$$\frac{1}{2} (i - \epsilon) = 9^{0} 59' 49'', 5 \quad \sin = 0,17360 \quad \cos = 0,98482$$

$$\sin \frac{\Omega' + \sigma}{2} = 0,21672.$$

$$i' = 65^{0} 43' 20''$$

$$\frac{\Omega' + \sigma}{2} = 12^{0} 31'$$

$$\frac{\Omega' - \sigma}{2} = 3^{0} 23' 25''$$

$$\frac{\Omega' = 15^{0} 54' 25''}{\sigma = 9^{0} 7' 35''}$$

$$\omega = 55^{0} 48' 40,'' 6$$

$$\omega' = 64^{0} 56' 15,'' 6$$

								Ein	stel	lhel	bel									Erläuterungen				Umd	rehun	gszä	hlwei	rk						Sc	hlitt	en		Ceou.					F	Resu	ltatw	erk	
	20 1	19 1	8 1	7 1	6 1	5 14	1 13	12	11	10	9	8	7	6	5	4	3	2	1			12 1	1 10	9	8 7	6	5 4	3	2	1	20 19	9 18	17	16 1	5 1.	4 13	12	11	10	9	8	7 6	5	4	3	2	I
1)	T	Ī	T		Ī									5	4	ī	ī	ī	6	— sin Ω' · cos i'	+					ō,	$\frac{1}{2}$	4										о,	ı	1	2	6 9) 0	7	3	2	8
	ō,	9	6	ī ;	7 7	ī														cos Ω' einsetzen	+									ī	0, 9	6	1	7	r			0,	1	1	2 (6 9	0	7	3	2	8
									0,	1	1	2	6	9	0	7	3	2	8	Divisor sin Ω' · cos i' einsetzen										ī	0, 9	6	1	7	r												
					2800				о,	1	1	2	6	9	0	7	3	2	8	cos Ω' = 8 53406	_		8,	5	3 4	0	6 4	. 6	5	7	0, 0	0	0	0	0 0	0	0	0	0	4	0	3 c	1 9	3	5	o	4
																				$\frac{\cos \Omega'}{-\sin \Omega' \cdot \cos 1'} = -8,53406$ $C_1 = 96^0 40' 59,''8$											1																
														ō	, 9	6	ī	7	ī	cos Ω' · cos i'	+	(1)				ō,	4 ī	Ī								8									8		
	ō,	2	7	4	5 5	3														sin Ω' einsetzen	+										0, 2							0,	3	9	5	4 1	6	6	8	3	6
			T		-				о,	3	9	5	4	1	6	6	5 8	3	6	Divisor cos a' · cos i' einsetzen			26							ī	0, 2	7	4	0	8												
									0,	3	9	5	4	I	6	6	8	3	6	$\frac{\sin \Omega'}{\cos \Omega' \cdot \cos i'} = 0.69314$ $C_2 = 34^043'39''$			0,	6	9 3	1	4 2	2	2	5	0, 0	0	0	0	0 0	0	0	0	1	2	7	3 7	1 4	. 9	9	0	0
I																				$\cos \Omega \cdot \cos \Omega = 34^{0}43'39''$											1				1				Ш								
							ō	, 5	6	ī	7	ī								cos Ω' einsetzen	+							_		ī	_			4	1	_	+-	-	I				+				
														o	, 9	9	3	2	0	$\frac{\cos \Omega'}{\sin C_1} = 0.96829$	_		_		0, 9	6	8 2	9	4	4	-	1			+	0	, 0	0	0	0	0	0 0) 0	I	9	2	0
																				sin C ₁			-		+		+	+		_		+-		Н	+	+	-			-			+	+			
-							0	, 2	7	4	ō	8								sin Ω' einsetzen	+		_				-	-	Н	ī	+	-		Н		_			4		7						
														C	, 5	; 6	5 9	6	8	$\frac{\sin \Omega'}{\sin C_2} = o_{\mathcal{A}}8111$	_		+		0, 4	8	1 1	1	2	2	4	- 4	-	\vdash		0	, 0	0	0	0	0	0 0) 0	I	9	0	4
							1							1	1					sin C ₂			-	-			+	-	0.5		+			1	-	- 000	-	-	\vdash		+	-	1773	-		- 60	04/165
							_	1						1									_	-	-		+	-	-	-	+	+	-	-	+	-			H	\dashv	+	+	-	-	-		
	1					-	_	_	-			1	-	1		-	-					-		-	+	i anno	+	+	-	\dashv	+	+			+	-	-		H	-	+	+	+	+			
17		_			-	+	-	_	L			-	-	-	-	+	-		-		-		+		+		+	+			100	+-			+	+				-		+	+				
													1									Щ	Ω' =						1				1	s =		0,96	4 :	1	8	1			-	1	D.	R.	G. M.

Aufgabe: Berechnung der Aequator-Konstanten C_1 , C_2 , c_1 c_2 a) tang $C_1 = \frac{\cos \Omega'}{-\sin \Omega' \cdot \cos i'}$ c) $\sin c_1 = \frac{\cos \Omega'}{\sin C_1}$

a) tang
$$C_1 = \frac{\cos \Omega'}{-\sin \Omega' \cdot \cos i'}$$
 c) $\sin \alpha$

b) tang
$$C_2 = \frac{\sin \Omega'}{\cos \Omega' \cdot \cos i'}$$
 d) $\sin c_2 = \frac{\sin \Omega'}{\sin C_2}$

$$\Omega' = 15^{0}54'25'' \text{ sin } = 0,27408$$
 $i' = 65^{0}43'20''$
 $\cos = 0,96171$
 $i' = 65^{0}49'20''$
 $\cos = 4,41116$
 $C_{1} = 96^{0}40'59,"8$
 $\sin = 0,99320$
 $\tan g = -8,53406$
 $\tan g = 0,69314$

$$\frac{\sin c_1 = 0.96829}{\sin c_2 = 0.48111}$$

M.)1156

								E	ins	tel	he	bel	1									Erläuterungen				U	mdr	hun	gszä	hlwe	erk						Sc	hlit	ten							1	Resu	ıltat	wer	k
	20	19	18	17	16	15	14	13	12	11	10	9	8	17	1	6	5	4	3	2	1	100000000000000000000000000000000000000		12	11	10	8	7	6	5	4 3	2	1	20 1	18	17	16	15 1	4 1	3 12	11	10	9	8	7 0	6 5	5 4	3	2	I
)					1	1	Ì	T					Ī			- 2,	2	7	-2	6	8	r·sin c ₁	+			T	1		ō,	9	<u>8</u>	3 2	9								2	, =	5	0	6	ī	3 3	ī	7	2
					1	1	1			<u>-</u> ,	2	5	5	5 6	5	ī	3	3	ī	7	2	$r \cdot \sin c_1 \cdot \sin (C_1 + \omega' + v)$	+						ō,	9	ō ī	ī	9				ı,	9	8 3	3 1	7	o	7	1	5	3 2	2 7	4	6	8
2000					1	1		1	ō,	5	7	5	5	5 7	1	6				-		$r \cdot \sin e_1 \cdot \sin (CI + \omega' + v) - X$	_				3				ī						ī,	4	5 2	4 ī	2	4	7	ī	5	3 2	2 7	4	6	8
1000	-				+	7	1	1			•			T			2	7	-2	6	8	r·sin c ₂	+			-			ō,	4	8 7	ī	ī		T				1	T	_	o	9	3	4 (0 9	9 0	7	4	8
4		-				1	1	1					T	1		ō,	8	5	6	2	ī	$r \cdot \sin c_2 \cdot \sin (C_2 + \omega' + v)$	+		ī,	5	3	4	5	9	0 7	4	8				ο,	8	3	5						2 8		_		
		8							ō,	7	3	5	5	5	ī	3						$r \cdot \sin c_2 \cdot \sin (C_2 + \omega' + v) - Y$	_								ī						0,	1	4 6	5 5	I	5	2	6	4	2 8	3 5	2	5	6
											-	-	+	_	_		2	4	7	1	5	$\frac{r \cdot \sin \ c_2 \cdot \sin \ (C_2 + \omega' + v) - Y}{r \cdot \sin \ c_1 \cdot \sin \ (C_1 + \omega' + v) - X}$	_			-		0,	1	0 .	4 3	4	7	9 9	9	9	9	9	9 9	9 9	9	9	o	6	2	6 4	4 9	1	5	1
	-				-	-	-	-	-				+	+	1	- 2,	-2	7	-2	6	8	r·sin i'	+		-	+	-		ō,	5	ī ī	5	6		+		+			+	2	, 0	7	1	6	8 4	4 I	8	0	8
)	-	-			+	+			+			-	t	t		1	100	2	5	-5	8		+		- 2,	5	7 I	6	8	4	ī 8	5 0	8	1			0,	6	7 4	1 5	_	1	-	-	_	4 2	2 6	6	7	2
	-	Г					1	1	ō,	-3	ī	8	3	3 3								$\mathbf{r} \cdot \sin \mathbf{i}' \cdot \sin (\omega' + \mathbf{v}) - \mathbf{Z}$					1				ī			T			0,	3	5 3	5 6	9	9	6	5	2	4 2	2 6	6	7	2
							1				ī	-4	2	5	4	ī	-2	4	7	ī	5	$\frac{\mathbf{r} \cdot \sin \ \mathbf{i}' \cdot \sin \ (\omega' + \mathbf{v}) - \mathbf{Z}}{\mathbf{r} \cdot \sin \ \mathbf{c}_1 \cdot \sin \ (\mathbf{C}_1 + \omega' + \mathbf{v}) - \mathbf{X}}$	_				T	о,	2	5	3 3	2	5	9 9	5	5	9	9	9	9 9	9	9	7	5	8	5 5	5 5	2	9	7
00														Ī	_	$\overline{}$	-	_	_	_	o	$r \cdot \sin c_1 \cdot \sin (c_1 + \omega + v) - X$ $r \cdot \sin c_1 \cdot \sin (\omega + v) - Z$ $r \cdot \sin c_1 \cdot \sin (CI + \omega + v) - X \cdot \cos \alpha$	+					0,	0	0	0 0	0	0	-	_					C	, 2	5	1	9	5	7 0) 4	5	0	0
					-			-	- - -	- a	15	-5	ē	5 6	9	9	6	-5	- 2	- 4	- 2		+			+	+			1	+		r,	+	+			+	+		3	5	5	6	9	96	6 5	5 2	4	2
									-,	5	3						7				2	$\frac{\mathbf{v} \cdot \sin \mathbf{i}' \cdot \sin (\mathbf{\omega}' + \mathbf{v}) - \mathbf{Z}}{\sin \delta}$	_					Ι,	4	5	5 8	7	6						1	-	-	-		_	-	0 0	-	-		+
-																-							-			+					+	+			-				+	+	+					-	+		-	
			-										+	1		+										+					+									1										
													T																						1000															. G.

$$Aufgabe: \ a) \ \tan \alpha = \frac{r \cdot \sin \ c_2 \cdot \sin \ (C_2 + \omega' + v) - Y}{r \cdot \sin \ c_1 \cdot \sin \ (C_1 + \omega' + v) - X} \ ; \underbrace{\alpha = o^h 23^m 49,^87} \cdot \cos = o,99460$$

b) tang
$$\delta = \frac{r \cdot \sin i' \cdot \sin (\omega' + v) - Z}{r \cdot \sin c_1 \cdot \sin (C' + \omega' + v) - X} \cdot \cos \alpha$$
; $\frac{\delta}{\omega} = + \frac{14^08'31''}{\omega'} \sin = 0.24432$

c)
$$\rho = \frac{r \cdot \sin i' \cdot \sin (\omega' + v) - Z}{\sin \delta} = 1.45587$$

Die mit - versehenen Zahlengruppen sind nach erfolgter Durchführung der jeweiligen Rechnungsart zu löschen.

$$r = 2,27268$$

 $\sin c_1 = 0,96829$

$$\sin c_2 = 0,48111$$

$$C_1 + \omega' + v = 115^0 41' 5,"4 sin = 0,90119$$

$$C_2 + \omega' + v = 53^0 43' 44,"6 \sin = 0,80622$$

 $i' = 65^{0}43'20''$ $\sin = 0.91156$

$$\omega' + v = 19^{3}0'4,"6 \sin = 0.32559$$

X = 0,579046

Y = 0,735013

Z = 0.318820

	Eín	stell	heb	el								Erläuterungen				Umd	rehun	gszäl	ilwei	rk						Sch	litte	en							Res	ultat	wer	rk
0 19 18 17 16 15 14 13	3 12	11	10	9	8 /	7	5 5	4	3	2	1			12 1	1 10	9	8 7	6	5 4	3	2	1 2	0 19	18	17	6 1	5 14	13	12	11 1	10 9	8	7	6	5 4	3	2	1
	T			-	_	2	2	T	T		T	ξ einsetzen	+								П	ī			T						T	7, 4	2	2	T			
			ī	3		T	1	Ť	T	П		ξ — 13									П	ī	9	9	9	9 9	9	9	9	9	9 4	, 4	2	2				
	T		0000		84	1	1	7	7, 4	2	2	$(\xi - 13) - A \xi$	_					ō,	0 0	7	8	8	9	9	9	9 9	9	9	9	9	9 4	1, 3	6	3	5	1 4	6	5 4
	T			7	1	1	T	7	, =	8	9	$(\xi - I_3) - A \xi - B \eta$	-					ō,	ō ō	3	6	8	9	9	9	9 9	9	9	9	9	9	, 3	3	6	6) 1	I	:
				ō,	4	2	0 6	3 0	(C)		-	$(\xi - I_3) - A \xi - B \eta - C$	+					I				ī	9 9	5	9	9 9	9	9	9	9	9 2	7	5	7	2 3	j ī	ī	1
				5,	2	4	2	7 0	8	8	_	$[(\xi-13)-A\xi-B\eta-C]\cdot 5$	+				18	19				5							1	-	2 6	, 2	τ	3	5	1 4	4	
	T			0,			-	-	1	П		$x + v_1 + v_2 = X$	-						T			ī	T								2 (ó, 2	1	2	Ι.	1 4	4	1
Gleichzeitige Addition,		Ш			1	7		+	T	Ħ						T			T				T							T								
Subtraktion			1	7,	2	8	9		1			η einsetzen	+			T	T		T			ī	T		T		1			T	1	7, 2	8	9				1
und Multiplikation			ī	3,	5	0	5	+		П		η — 13		T			\top		Ť	T		ī	9 9	9	9	9 9	9	9	9	9		-	1	-				1
	+				1	+	+	1	7, 4	2	-2	$(\eta - 13) - D\xi$	+				T	ō,	0 0	3	5														9	7 7	0	,
	+			1	1	+		1	7, 2	8	9	$(\eta - 13) - D\xi - E\eta$	_				1	ō,	0 0	7			9										5		6			
	+	Ш		ō,	5	5	3	ī 0	-		-	$(\eta - 13) - D\xi - E\eta - F$	+			T	T			1	Ħ	ī	9 9	9	5	9 3	5 5	5	9	9	5 2	1, 3	ī	5	_	1 2		
		Ш		-	_	-	-	-	-	4	-	$[(\eta-13)-D\xi-E\eta-F]\cdot 5$	+						T	T	-	5	T				T				2 8	_			4 :	3 7	I	
				-	-	-	0 6		1	Ť	Τ.	$y + v_8 = Y$			1				T		П	ī		П			T			_	2 8		_	$\overline{}$		-		-
	+	· t		-		1	1		\dagger	t					+	\top		Ħ				1	1	П			1	T	П			T				1	T	
	-	ō	-	7	7	- 2	5					tang X einsetzen	+		+		1					ī	†	П				T	0,	0	0	7 6	2	5	T	T		Ī
					1			8 8	3 6	8	ō	$\frac{\tan g \ X}{\cos \ g} = \tan g \ (\alpha - \alpha_0)$					0	ō	5 5	3 6	ō	3	1			-	-		ō,	ō	5	5 5	ō	ō	8	5 5	6	5
	-	-			+	-	0,	9 9	9 9	9	7	$\sin g \cos X = \sin \delta$	+					0,	4 6	5 2	ı	5	+			+	+	-		0,	4	5 2	I	3	6	1 3	5	5

Aufgabe: $X = \{[(\xi - 13) - A \xi - B \eta - C] \cdot 5\} + v_1 + v_2$ $Y = \{[(\eta - 13) - D \xi - E \eta - F] \cdot 5\} + v_3$ $g = \delta_0 + Y$ $\tan (\alpha - \alpha_0) = \frac{\tan X}{\cos g}$ $\sin \delta = \sin \cos X$ $\xi = 7,422$ A = + 0,00788 $\eta = 7,289$ B = + 0,00368 $v_1 = + 0,0005$ C = - 0,42060 $v_2 = + 0,0009$ D = - 0,00350 $v_3 = + 0,0006$ E = + 0,00787F = - 0,05310 tang $(\alpha - \alpha_0) = 0,008603$ $\alpha - \alpha_0 = -1^m 58,^{s_2}$ * $\alpha_0 = 20^h 6^m$ $\alpha = 20^h 4^m 7,^{s_8}$ $\alpha = 20^h 4^m 7,^{s_8}$ $\alpha = 20^h 4^m 7,^{s_8}$ $Y = -28' \cdot 26'',748'$ $\delta = +28^0$ $g = +27^0 \cdot 31' \cdot 33'',25$ sing = 0,46215 cos g = 0,88680 tang X = 0,00763