Logarithmen – deren Geschichte und wo sie uns heute in der Natur und im Alltag begegnen

Klaus Kühn und Stephan Weiss Rudolf-Steiner-Schule Gröbenzell am 22.10.2012

Einloggen = log (in) = ?

Fragen zu Logarithmen

Logarithmen nicht zu verwechseln mit Algorithmen

- Seit wann gibt es Logarithmen ?
- Von wem wurde die erste Logarithmentafel wann veröffentlicht?
- Was sind Logarithmen und was haben sie bewirkt?
- Welche Rechenhilfsmittel enthalten Logarithmen?
- In welchen Bereichen des Lebens spielen die Logarithmen immer noch eine Rolle?

Gliederung

- 1. Grundsätzliches
- 2. Lösung "einfacher" Aufgaben
- Lösung der Aufgabe c1.) mit Hilfe des Logarithmus und der besonderen Rechenregeln
- 4. Logarithmentafeln und wichtige Persönlichkeiten
- 5. Berechnung von Logarithmen
- 6. Logarithmen und ihre Anwendungen (Alltag + Natur)
- 7. Quellenangaben
- 8. Diverses und Fragen
- 9. Nächste Themen......

Grundsätzliches

(oder Faktor (4) mal Faktor (3) = Produkt (12))

B (Faktor)
$$mal(*)$$
 B mal B mal B = B^4
Beispiel: $3*3*3*3 = 3^4 = 81$

Potenz = Basis B (3) mit Hochzahl oder Exponent 4)

Allgemeine Potenz: BH = N(umerus)

Grundsätzliches

Suche nach dem unbekannten Wert X

Fall b.)
$$X^{H} = N -> radizieren (B gesucht)$$
 [Lösung: $X = H\sqrt{N}$; $X^{4} = 81$; $X = 4\sqrt{81}$; $X = 3$]

Fall c.)
$$B^{X} = N \rightarrow logarithmieren (X gesucht)$$
 [Lösung: $X = log_{B} N$; $log_{3} 81 = X$; $X = 4$]

Fall b.) und c.) werden als "Umkehrungen" von Fall a.) gesehen

Grundsätzliches – Der Name Logarithmus..

- ..wurde von dem schottischen Mathematiker John Napier eingeführt und
- leitet sich von den griechischen Worten logós (Verständnis, Lehre, Verhältnis, Ursache) und arithmós (Zahl) ab.
- Wahrscheinlich hat Napier den Begriff von Caspar Peucer – Commentarius....1553
 Wittenberg - "logarithmanteia" (Wahrsagung von Wort per Zahl und umgekehrt) übernommen.

Einige "einfache" Aufgaben

a.) 10 hoch
$$x = 10^x = 100$$
; $x = ?$

b.)
$$2^x = 16$$
; $x = ?$

c.)
$$100^{x} = 10$$
; $x = ?$

d.)
$$10^{x} = 2$$
; $x = ?$

wie hilft der Taschenrechner?

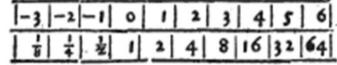
Lösung "einfacher" Aufgaben mit Fokus auf Zahlen (nicht Winkel)

a.) 10 hoch
$$x = 100$$
; $x = 2 = > 10^2 = 10 \text{ mal } 10 = 100$
1 Million = ? 42 Milliarden = ? 1000 mal 1 Million = ?

b.)
$$2^x = 16$$
; $x = 4 \Rightarrow 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$

tari videtur in progressione numerorum naturali, dum servit
progressioni.

Sed oftendenda est ista speculatio per exemplum.


Posset hic fere nouus liber integer scribi de mirabilibus numerorum sed oportet ut me hic subducă, & clausis oculis abeă. Repetam uero unum ex superioribus, ne frustra dicar suisse in campo isto. Sed sententia inuersa repetam quod mihi repetena dum uidetur.

Michael Stifel's Tabelle 1544

tari uidetur in progressione numerorum naturali, dum seruit progressioni.

Sed oftendenda est ista speculatio per exemplum.

Posset hic fere nouus liber integer scribi de mirabilibus numerorum sed oportet ut me hic subducă, & clausis oculis abeă. Repetam uero unum ex superioribus, ne frustra dicar fuisse in campo isto. Sed sententia inuersa repetam quod mihi repetena dum uidetur.

Quelle: Google Books Titel + folio 249

Beispiel: 2 mal 16: über der Ziffer 2 steht die 1 und über der 16 steht die 4, ergibt summiert 1 plus 4 = 5. Unter der 5 steht die Lösung 32.

Und so wurde eine Multiplikation als Addition ausgeführt

In heutiger Schreibweise: $\log_2 2 + \log_2 16 = \log_2 32$

Gesprochen: Logarithmus von zwei zur Basis zwei plus Logarithmus 16 zur Basis zwei gleich Logarithmus von 32 zur Basis zwei

Lösung "einfacher" Aufgaben

Basis = 2

Arithmetisch	-2	-1	0	1/2	1	2	3	4
Potenz	2-2	2-1	2 º	2 ^{1/2}	2 ¹	2 ²	2 ³	2 4
Geometrisch	1/4	1/2	1	$\sqrt[2]{2^1}$	2	4	8	16

c.)
$$100^x = 10$$
; $x = \frac{1}{2} = 100^{\frac{1}{2}} = \frac{2}{100} = 10$ (Basis = ?)

Arithmetisch	-2	-1	0	1/2	1	2	3	4
Potenz	100-2	100-1	100 º	100 ^{1/2}	100 ¹	100 ²	100 ³	100 4
Geometrisch	1/10000	1/100	1	$\sqrt[2]{100^1 = 10}$	100	10000	1000000	10000000

Lösung der Aufgabe c1.) geht mit Hilfe des Logarithmus und der besonderen Rechenregeln

c1.) $10^x = 2$; x = ? (x liegt zwischen 0 und 1, weil 2 zwischen $10^0 = 1$ und $10^1 = 10$ liegt)

Wie hilft hier der Taschenrechner? Ist nicht mehr "einfach".

Umformen erforderlich:

 $\log_{10} 2$ (schreibt man auch = $\lg 2$) = x;

$$X = 0.301 = 10^{0.301} = 2$$

Definition des Logarithmus (von Zahlen)

Jede **Zahl (Numerus)** N > 0 lässt sich als Potenz einer beliebigen positiven Basis B darstellen -> N = B^X (lösbar durch logarithmieren: $X = log_B N$)

Der Logarithmus einer Zahl (N) ist der Exponent (X), mit dem eine Basiszahl (B) potenziert werden muss, um die Zahl (N) zu erhalten.

$$\log_{10} 2 = 0.301$$
, so ist $10^{0.301} = 2$

Lösung des Aufgabentyps c1.) geht NUR mit Hilfe des Logarithmus und der besonderen Rechenregeln

c1.)
$$5^x = 2$$
; $x = ?$ (x liegt zwischen 0 und 1, weil 2 zwischen $5^0 = 1$ und $5^1 = 5$ liegt)

wie hilft hier der Taschenrechner? Ist nicht mehr "einfach".

Rechenregel erforderlich:

$$\log_{5} 2 = \frac{\log_{10} 2}{\log_{10} 5} = \frac{0.301}{0.699} = x; \quad x = 0.4306 \implies 5^{0.4306} = 2$$

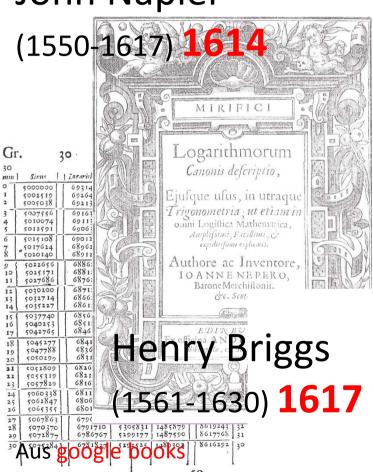
$$\frac{0.301}{0.699}$$
 = lg 0.301 minus lg 0.699 = -0.5214 - (-0.1555) = -0.3659; 10 -0.3659 = 0.4306

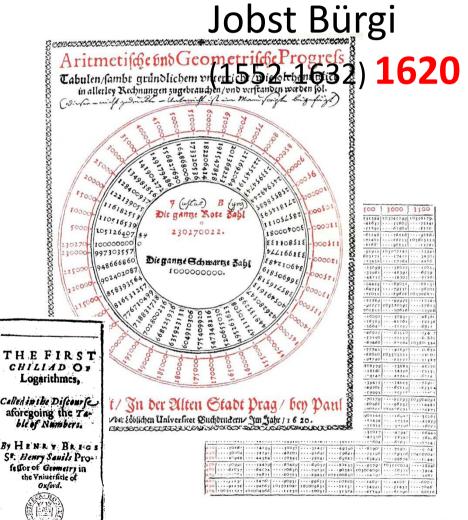
Logarithmen – Zeitgeschehen

- Was war los zu Beginn der Neuzeit?
 - Entdeckung Amerikas (1492) Navigation
 - Intensivierung weltweiten Handels
 - Erde dreht sich um Sonne (1543) Astronomie
 - Gregorianischer Kalender (1582)
 - Vorbereitet u.a von Regiomontan († 1476 in Rom)
 - Astronomie, Navigation, Erdvermessung und Wissenschaft machten komplexere Rechnungen erforderlich [besonders in der (sphärischen) Trigonometrie]
 - Suche nach Rechenvereinfachungen
 (Vorläufer der Logarithmen: Prosthaphärese ca. 1517 1620)

Logarithmen – Rechenoperationen und – zeichen

Operationen	Rechenzeichen	Logarithmus	Verein- fachung
Addition	+	nicht anwendbar	
Subtraktion		nicht anwendbar	
1. Multiplikation	(kleines) x, *	anwendbar	+
2. Division	:	anwendbar	-
3. Exponent	m ⁿ	anwendbar	*
4. Wurzel	ⁿ √m (r=radix)	anwendbar	:


Rechenregeln zum Rechnen mit Logarithmen


3.
$$\log m^n = n * \log m$$

4. $\log \sqrt[n]{m} = 1/n * \log m$

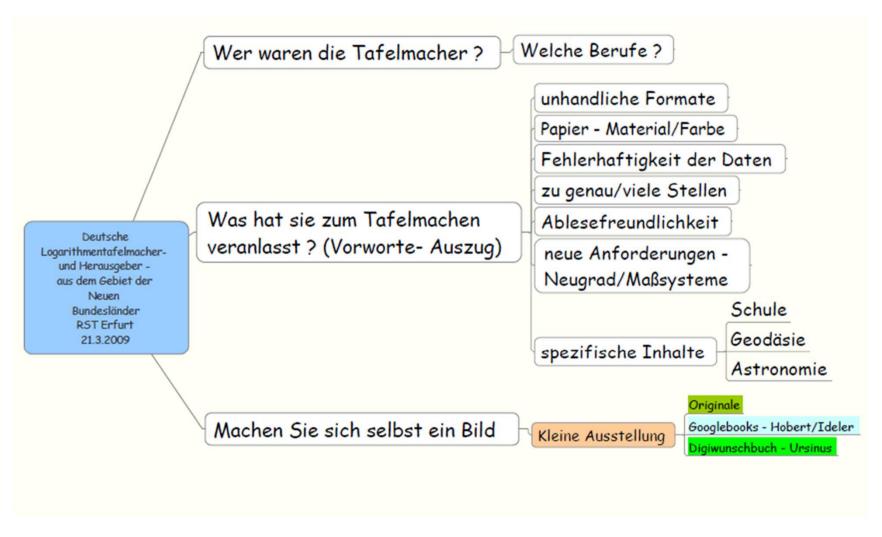
Erste

Logarithmentafeln

John Napier

Geschichte der Logarithmen – Auswahl wichtiger Persönlichkeiten

- Archimedes, Chuquet, Michael Stifel (1487 1567)
- John Napier (Neper), Lord of Merchiston 1552-1617
 (Beruf: Mathematiker; Edinburgh; 1565 1571 Kontinental Europa)
 - Mirifici Canonis Logarithmorum Descriptio; 1614 (vor fast 400 Jahren)
- Jost Bürgi 1552 1632
 (Beruf: Uhrmacher, Astronom, Mathematiker; Kassel, Prag)
 - Aritmetische und Geometrische Progresstabulen..; 1620
- Henry Briggs 1560 1630
 (Beruf: Professor der Geometrie; London, Oxford)
 - Arithmetica Logarithmica sive logarithmorum chiliades triginta, pro numeris naturali serie crescentibus ab unitate ad 20000 et a 90000 ad 100000; 1624
- Pierre-Simon Laplace 1749 1827 (Mathematiker): "Die Logarithmen haben das Leben der Astronomen verdoppelt, weil sie deren Arbeit halbiert haben."

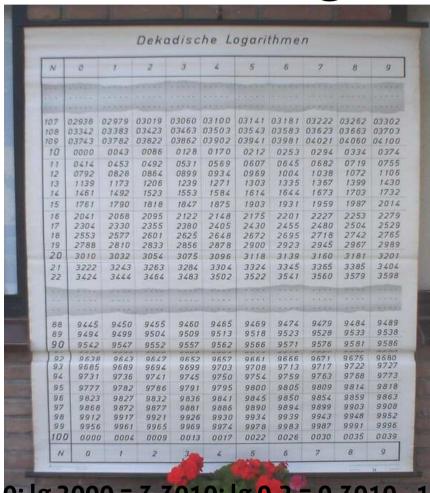

Geschichte der Logarithmen – Auswahl wichtiger Persönlichkeiten

- Kontinentaleuropa (Deutschsprachig)
 - Johannes Kepler 1571 1630 (Astronom Chilias Logarithmorum 1624; Rudolfinische Tafeln 1627)
 - Adrian Vlacq 1600 1666/7 (Buchhändler in Gouda -Arithmetica Logarithmica 1628; 1673 deutsche Version);
 Ezechiel de Decker 1603 – 1647 (Geodät, Mathematiklehrer)
 - Juri (Georg) Vega, Baron von Vega 1756 1802 (Offizier, Mathematikprofessor)
 - Leonhard Euler 1707 1783 (Mathematik professor)
 - Carl Friedrich Gauss 1777 1855 ("Fürst der Mathematiker")
 - Friedrich Gustav Gauss 1829 1915 (Geodät; "Kataster-Gauss")
 - Oskar Schlömilch 1823 1901 (Mathematikprofessor)
 - Und viele weitere Tafelmacher/Herausgeber (Bremiker, Schrön, Bruhns, Jordan, siehe Tabelle)

Logarithmentafelmacher – eine Auswahl (D)

Adam, V.	Schubert, Andreas	Ferrol, F.	Günther, Ursula	Jahn, Gustav Adolph	Halberstadt, Ernst	Reuschel, Arnulf	Rex, Friedrich Wilhelm	Schülke, Albert	Voellmy, Erwin
Adler, August	Brandenburg, Hermann	Frobenius, Georg Ludwig	Hammer, E.	Jelinek, Laurenz	Kraft, A.	Markusche- witsch, A.	Rohrbach, C.l	Schultz, E.	Waage, Eugen
Albrecht, Theodor	Bürgi	Fulst, Otto	Hantschl, Joseph	Jocher, Wolfgang von	Küster, F.W.	Martens, H.	Rottmann, Karl	Schulz, Paul	Wittstein, Theodor
August, Ernst Ferdinand	Bremiker, Carl	Gauss, Carl Friedrich	Hartenstein, H.	Johnscher, Alphons	Küstner, Herbert	Matthiessen, Erhard Adolph	Rühlmann, Moritz	Seemiller, Hermann+ Adolf	Wolff, Christian
Autoren- kollektiv	Bruhns, Christian	Gernerth, August	Heger, R.	Jordan, Wilhelm	Lambert, Johann Heinrich	Matzek, Franz	Schaefer, Werner	Sicken- berger, A.	Zech, Julius
Bauschinger, Julius	Brunn, Joseph	Giese, Gustav	Hertzer, Hugo	Kewitsch, Georg	Laub, Josef;	Minsinger, Franz	Schärf, Julius	Sieber, Helmut	Mühlbauer, Paul
Peters, Johann Theodor	Cohn, Berthold	Girndt, M.;	Hobert, Johann Philipp	Kleyer, Adolph	Schärf, Julius	Mocnik, Franz Ritter von	Wörle, Helmut	Stampfer, Simon	Zimmer- mann, Ludwig
Becker, Ernst Emil Hugor	Crüger, Peter	Liebmann, A.	Kepler, Johannes	Koch, Albert	Leder, Ernst	Morawetz, Johann	Schlömilch, Oskar	Steinhauser, Anton	
Beyrodt, Gustav;	Dietrichkeit, O.	Gravelius, H.	Ideler, Louis	Putschbach, Rolf	Ligowski, W.	Müller, Fritz	Schmidt, Georg Gottlieb	Strauchius, Aegidius	
Küstner, Herbert	Domke, F.	Greve, Adolf	Nell, A.M.	Köhler, Heinrich Gottlieb	Lindner, Ignaz	Oppolzer, Theodor	Schnellinger, Josef	Treutlein, P.	
Börgen, C.	Eilmann, Mauritz	Grüson, Johann Philipp	Hoffmann, Johann Josef Ignaz von	Koitzsch, R.	Lötzbeyer, Philipp	Pasquich, Johann	Schrön, Ludwig	Ursinus, Benjamin	
Bornitz, Ulrich;	Faulhaber, Johannes	Gundel- finger, S.	Horn, Alfred	Koschemann, Otto;	Ludwig, Emil	Prasse, Moritz von	Schubert, Hermann	Vega, Georg	

Tafelmacheranlässe



Logarithmentafelmacher – ihre Verdienste

- Logarithmentafeln enthielten anfänglich die Geschichte der Logarithmen und viele, genaue Erklärungen (diese fielen später weg – Druckkostenerparnis)
- Viele Beispielaufgaben, um Anwenderkreis zu erhöhen
- Rechenverständnis vermittelt durch praktische (kaufmännische) Aufgaben mit Lösungswegen
- Anpassung an die Genauigkeitserfordernisse neue Berechnungsmethoden, Stellenzahl, Lesbarkeit
- Tafeln waren fast 400 Jahre im Einsatz (Werte wurden auch kopiert oder verkürzt)
- Anpassung an Schulbedürfnisse
 - weniger Stellen, weniger Umfang (transportierbarer und preiswerter)

Logarithmendarstellung – Napier vs Wandtafel 4stellig

٥.			7 -		Simus	١.
nn	Sinus	Logarithmi	31	iogarithmi	C-91-1200-0127/	1_
1	5000000	6931469	5493059	1438410	8600254	00
1	5002519	6926432	5486342	1440090	8658799	59
	5005038	6921399	5479628	1441771	8657344	58
1	5007556	6916369	5472916	1443453	8655888	57
- 1	5010074	6911342	5465206	1445136	8654431	56
	5012591	6906319	5459498	1446821	8652973	55
1	5015108	6901299	5452792	1448507	8651514	54
3	5017624	6896282	5446088	1450194	8650055	53
	5020140	6891269	5439387	1451882	8648595	52
1	50226561	1 6886259	5432688	1453571 /	8647134	51
101	5025171	6881253	5425992	1455261	8645673	50
11	5027686	6876250	5419298	1456952	8644211	49
121	5030200	6871250	5412605	1458645	8642748	48
13	5032714	6866254	5405915	1460339	3041284	47
14	5035227	6861261	5399227	1462034	8639820	46
15 1	5037740	1 6856271	5392541	1463730	18638355	145
16	5040253	6851285	5385858	1465427	8636889	44
17	5042765	6846302	5379177	1467125	8635423	43
18	5045277	6841323	1 5372499	1468824 [18633956	1 +2
	5047788	6836347	5365822	1470525	8632488	41
19	5050299	6831374		1472227	8631019	40
21	5052809	0826405	5352475	14739301	18629549	139
22	5055319	6821439	5345805	1475634	8628079	38
23	5057829	6816476	5339137	1477339	8626608	37
	5060338	6811516		1479045	[8625137	134
24	5062847	6806560		1480752	8623665	3
25	5065355	6801607			8622192	134
-		1 1	1		8620718	13
27	5067863	6796657		1485879	8619243	3
	5070370	6786767			8617768	13
29		1 1			8616292	
30	5075384	1 6781827	5292525	1489302	8010292	3
	1		1 1	1 1		1

Beispiel 2: lg 2 = 0,3010; lg 20 = 1,3010; lg 2000 = 3,3010; lg 0,2 = 0,3010 - :

Berechnung von Logarithmen mit natürlichen Logarithmen

(nach William Oughtred im Appendix von Edward Wright: A Description of the Admirable Table of Logarithms; 1618 2. Auflage)

Von \	William Ough	tred ver	kürzte (sin=r	num) Loga	rithmentabe	elle von	1618	
(Edw	ard Wright:	A Descri	ption of the	Admirable	Table of Log	arithm	s)	
sin	logarith. (In)	sin	logarith. (In)	sin	logarith. (In)	sin	logarith. (In)	
1	0	100	4,605170186	10000	9,210340372	1,1		0,09531018
2	0,693147181	200	5,298317367	20000	9,903487553	1,2		0,182321557
3	1,098612289	300	5,703782475	30000	10,30895266	1,3		0,262364264
4	1,386294361	400	5,991464547	40000	10,59663473	1,4		0,336472237
5	1,609437912	500	6,214608098	50000	10,81977828	1,5		0,405465108
6	1,791759469	600	6,396929655	60000	11,00209984	1,6		0,470003629
7	1,945910149	700	6,551080335	70000	11,15625052	1,7		0,530628251
- 8	2,079441542	800	6,684611728	80000	11,28978191	1,8		0,587786665
9	2,197224577	900	6,802394763	90000	11,40756495	1,9		0,641853886
10	2,302585093	1000	6,907755279	100000	11,51292546	1,01		0,009950331
20		2000	7,60090246	200000	12,20607265	1,02		0,019802627
30	3,401197382	3000	8,006367568	300000	12,61153775			0,029558802
40	3,688879454	4000	8,29404964	400000	12,89921983	1,04		0,039220713
50	3,912023005	5000	8,517193191	500000	13,12236338	1,05		0,048790164
60	4,094344562	6000	8,699514748	600000	13,30468493	1,06		0,058268908
70	4,248495242	7000	8,853665428	700000	13,45883561	1,07		0,067658648
80	4,382026635	8000	8,987196821	800000	13,59236701	1,08		0,076961041
90	4,49980967	9000	9,104979856	900000	13,71015004	1,09		0,086177696
Ough	tred hat in o	ler Tabel	le ohne Kom	ma-Stelle	nangaben ge	arbeite	et.	
Die \	⊮erte selbst	sind ak	tualisiert (Ba	asis e) un	d entsprech	en nicl	ht immer der	n Original.

	Logarith.	Circ	nearith	Sine.	Logarithme.
				10000	
1	000000		4605168 5198314	20000	
2	693146	200	703780		10308949
	1096612	400	991462		10596631
	1386294	500	214605	50000	10819774
5	1791758		396925		1100 2095
7	1945909		551077		11156246
8	2079441	800 6	684609	80000	11239778
۰	2197223	90016	802391	90000	11407560
10	2202584	1000	5907753	100000	11512921
20	29957201	2000	603899	200000	12200007
20	3401196	2000'8	3006365	300000	12011333
40	26888781	400018	32940471	400000	1209921
10	12911021	5000]E	3377190	200000	13122350
63	4094342	600018	6995111	600000	13304679
70	4248493	7000	3853662	700000	13458830
80	4382025	8000	5987194	800000	13591361
90	4499807	9000	104976	900000	13710144
	The supple	ment o	f the Tabi	le for ten	th and
1		•	man von pa		
Sin	Logarith	Sin.	Logarit	b. Sine	Logarithme
1 11		1 17	1530628	104	39223
l is			587786		48790
1	1		64185		58269
1			995		67659
1			19803	. 1 .	76962
1				,	86177
11	47000	4 1103	29560	1.39	

Berechnung von Logarithmen mit natürlichen Logarithmen

(nach William Oughtred im Appendix von Edward Wright: A Description of the Admirable Table of Logarithms; 1618 2. Auflage)

Berechnung vo	n ln 257 (nach W	illiam Oughtred; Se	ite 13)
mit Einheit als 1	Million		
		In Faktor aus Tabelle	
257 * 3000	771000	8,006367568	
* 1,2	925200	0,182321557	
* 1,08	999216	0,076961041	
Rest zu 1000000	784		
		8,265650166	
		0,000784	
	"true logarithm"	8,266434166	
In 1000000 =	13,81551056		
Daher			
In 257 =	In 1000000		
	minus		
	8,266434166		
In 257 =	5,549860392		
	(liegt zwischen In	200 und In 300)	

direct you. Lastly, to this logarithme found out by the canon, adde the logarithms of the Table collaterall to the fine & parts wherewith you multiplyed, and the fumme of all shall be the logarithme of the sine or number proposed: as for example, I would haue the logarithme of 257.

fhal you have \$166432 for the true logaritme of 157.

Logarithmenberechner

Jahr	Autor	Titel	Jahr	Autor	Titel
1614	John Napier	Mirifici Logarithmorum Canonis Descriptio	1668	Nicolaus Mercator	Logarithmotechnica
1617	Henry Briggs	Chilias Prima	1688	Euclid Speidell	Logarithmotechnica or the making of numbers called logarithms to twenty five places
1618	William Oughtred	Appendix	1695	Edmond Halley	Compendious Method (Phil.Trans.No 16)
1620	Jost Bürgi	Arithmetische und Geometrische Progress Tabulen sambt gründlichem unterricht wie solche nützlich in allerley Rechnungen zu gebrauchen und verstanden werden soll	1714	John Long	New Method (Phil.Trans., 29, No 339, 52 - 55)
1624	Johannes Kepler	Mathematici Chilias Logarithmorum	1717	Brook Taylor	Attempt. (Phil. Trans. Nr 352)
1627	Johannes Kepler	Tabulae Rudolphinae	1770	Johann Heinrich Lambert	Zusätze zu den logarithmischen Tabellen
1633	Nathaniel Roe	Tabulae logarithmicae	1771	Robert Flower	The Radix – a new way of making Logs
1635	Edmund Wingate	A Logarithmeticall Table	1774	Abraham Gotthelf Kästner	Astronomische Abhandlungen 2. Sammlung

Logarithmenberechner

Jahr	Autor	Titel	Jahr	Autor	Titel
1783	Georg Vega	Logarithmisch-trigonometrische Tafeln nebst anderen zum Gebrauche der Mathematik eingerichteten Tafeln und Formeln	1885	J.C. Snowball	The Elements_ with the construction and use of tables of Lagarithms
1801	Jean Charles Borda	Tables Trigonometriques Decimales	1900	Moritz Cantor	Geschichte Mathem.
1806	Thomas Manning	New Method of computing Logarithms	1900	Dr. J. Lüroth	Vorlesungen über numerisches Rechnen
1817	Thomas Knight	Of the construction of Logarithmic Tables	1900	Artemas Martin	A Method of Computing the Common Logarithm
1835	J.R. Young	Elementary Essay on the Computation of Logarithms	1900	Wilhelm Franz Meyer	Enzyklopädie der Mathematischen Wissenschaften
1850	Wilhelm Matzka	Elementarlehre von den Logarithmen	1902	E. Mehmke	Numerisches Rechnen
1874	Ernest Sedlaczek	Tafel zur bequemen Berechnung 12 stelliger gemeiner Logarithmen und umgekehrt	1907	James K. Whittemore	The Calculation of Logarithms
1881	Alexander J. Ellis	Bimodular Method of Computing Logarithms	Quelle	: u.a. Gerlinde Fau	ustmann - Dissertation 1992

Berechnung von Logarithmen mit Potenztafeln

(nach Adolf Greve: Fünfstellige logarithmische und trigonometrische Tafeln nebst einer größeren Anzahl von Hilfstafeln; 1897)

num	log num	num	log num	num	log num	num	log num
1	0	1,01	0,00432137	1,0001	0,000043427277	1,000001	0,000000434294265
2	0,301029996	1,02	0,00860017	1,0002	0,000086850212	1,000002	0,000000868588095
3	0,477121255	1,03	0,01283722	1,0003	0,000130268805	1,000003	0,000001302881491
4	0,602059991	1,04	0,01703334	1,0004	0,000173683058	1,000004	0,000001737174453
5	0,698970004	1,05	0,0211893	1,0005	0,000217092972	1,000005	0,000002171466981
6	0,77815125	1,06	0,02530587	1,0006	0,000260498547	1,000006	0,000002605759074
7	0,84509804	1,07	0,02938378	1,0007	0,000303899785	1,000007	0,000003040050733
8	0,903089987	1,08	0,03342376	1,0008	0,000347296685	1,000008	0,000003474341958
9	0,954242509	1,09	0,0374265	1,0009	0,000390689250	1,000009	0,000003908632748
1,1	0,041392685	1,001	0,00043408	1,00001	0,000004342923	1,000001	0,000000434294265
1,2	0,079181246	1,002	0,00086772	1,00002	0,000008685803	1,000002	0,000000868588095
1,3	0,113943352	1,003	0,00130093	1,00003	0,000013028639	1,000003	0,000001302881491
1,4	0,146128036	1,004	0,00173371	1,00004	0,000017371432	1,000004	0,000001737174453
1,5	0,176091259	1,005	0,00216606	1,00005	0,000021714181	1,000005	0,000002171466981
1,6	0,204119983	1,006	0,00259798	1,00006	0,000026056887	1,000006	0,000002605759074
1,7	0,230448921	1,007	0,00302947	1,00007	0,000030399550	1,000007	0,000003040050733
1,8	0,255272505	1,008	0,00346053	1,00008	0,000034742169	1,000008	0,000003474341958
1,9	0,278753601	1,009	0,00389117	1,00009	0,000039084745	1,000009	0,000003908632748

Berechnung von Logarithmen mit Potenztafeln (nach Greve 1897)

Beispielrech	nung: 4stell	iger Logarith	mus von 3,1	zur Basis 10			
3,1/4 = 1/p1 × j	p2*p3*p4		3,1 = 4/p1 * p2	*p3*p4			
p1*p2*p3*p4 :	= P		X = 4/P	log x = log 4 -	log P		
log P =log ¡	p1 + log p2 +	· log p3 + lo	g p 4				
Ziel ist sch	rittweise das	p1, p2, p3 t	ınd p4 zu fi	nden, das de	r Einheit am	nächsten k	omm
	Faktor 1	p1	log Faktor p	log P = log p1+	log p2		
3,14 =	1,30	1,007500					
0,77500000	1,20	0,930000	0,079181246	0,079181246			
	Faktor 2	p2		plus			
	1,20	1,116					
0,93000000	1,07	0,9951	0,029383778	0,029383778			
	Faktor 3	р3		plus			
	1,07	1,064757					
0,9951	1,004	0,9990804	0,001733713	0,001733713			
	Faktor 4	p4		plus			
	1,005	1,004075802					
0,9990804	1,0009	0,999979572	0,000390689	0,000391			
				gleich			
				0,110689			
	log 3,1=	log 4	- log P				
	log 3,1 =	0,602059991	-0,110689	0.49137099	(8-stellig)		

Berechnung von Logarithmen

Berecl	nnung de	r dekadisc	hen	Loga	rithmen dı	urch
	_	s Addieren				
erstellt von	₩.J. Irler	09.10.12				
Potenzen	Potenzwert	Basis	Num		Berechnung	Log
Summandus =	0,0100					
n		1+Summandus	X			log(x)
0	1,0000		1	0,0		0.00000
 69	1,9869					
70	2,0068		2	69,7	69,7/231,4 =	0,30103
 110	2,9878					
111	3,0177		3	110,4	110,4/231,4 =	0,47712
 139	3,9872					
140	4,0271		4	139,3	139,3/231,4 =	0,60206
 161	4,9630					
162	5,0126		5	161,7	161,7/231,4 =	0,69897
 180	5,9958					
181	6,0558		6	180,1	180,¥231,4 =	0,77815
 195	6,9609					
196	7,0305		7	195,6	195,6/231,4 =	0,84510
 208	7,9222					
209	8,0014		8	209,0	203/231,4 =	0,90309
 220	8,9269					
221	9,0162		9	220,8	220,8/231,4 =	0,95424
 231	9,9595					
232	10,0591		10	231,4	231,4/231,4 =	1,00000

Berechnung von Logarithmen

- Napier, Bürgi, Kepler, Vega, Peters und andere haben jeder eine eigene (sehr zeitaufwändige und genaue) Methode benutzt
- Wurzelmethode (nachvollziehbar und einfach)

$$2^{10} = 1024 \sim 1000 = 10^{3}$$

$$2^{10} = 10^{3}$$

$$2 = \sqrt[10]{10^{3}}$$

$$2 = 10^{\frac{3}{10}}$$

$$\log_{10} 2 = \frac{3}{10} = 0.3$$

$$3^{9} = 19683 \sim 20000 = 2 * 10000$$

$$10^{\frac{3}{10}} * 10^{4} = 10^{4,3}$$


$$3^{9} = 10^{4,3}$$

$$3 = \sqrt[9]{10^{4,3}} = 10^{\frac{4,3}{9}} = 10^{0,48}$$

$$\log_{10} 3 = 0,48$$

$$\log_{10} 4 = ? \log_{10} 5 = ? \log_{10} 6 = ? \log_{10} 7 = ? \log_{10} 8 = ?$$

Logarithmen - Stellenzahl

Vega Thesaurus 1794

10-stellig (Wissenschaft) Folio 305 Seiten (N5) 305*300 = 91.500 Werte

N.	0	1	2	3	4	5	6	7	8	9	d.	P. P.
10750	031 40846	41250	41654	42058	42462	42866	43270	43674	44078	44482	404	
	44886	45290	45694	46098	46402	46906	47310	47714	48118	48522	404	
51 52	48026	49329	49733	50137	50541	50945	\$1340	51753	52157	52561	404	
53	52065	53368	53772	54176	54580	54984	55388	55792	56196	56599	404	
	57003	57407	57811	58215	5861q	59022	59426	59830	60234	60638	403	
54 55	61041	61445	61849	62253	62657	63060	63464	63868	64272	64676	403	
56	65079	65483	65887	66291	66694	67098	67502	67906	68309	68713	404	404
	69117	69521	69924	70328	70712	71135	71539	71943	72347	72750	404	1 40-4
57 58	73154	73558	73961	74365	74769	75172	75576	75980	76383	76787	404	2 8o.S
59	77191	77594	77998	78402	78805	79200	79613	80016	80420	80824	403	3 121.2 4 161.6
10760	031 81227	81631	82034	82438	82842	83245	83649	84052	84456	84860	403	5 202.0
61	85263	85667	86070	86474	86877	87281	87685	88688	88492	88895	494	6 242.4
62	89299	89702	90106	90500	90913	91316	91720	92113	91527	92931	403	7 282.8
63	93334	93738	94141	94545	94948	95352	95755	96158	96562	96965	404	8 323.2
64	97369	97772	98176	98579	98983	99386	99790	*00193	*00597	01000	403	9 363.6
65	032 01403	01807	02210	02014	03017	03421	03824	04227	0463E	05034	404	
66	05438	05841	06244	06648	07051	07454	07858	08261	08665	09068	403	
67	00471	09875	10278	10681	11085	11488	11891	12295	12698	13101	404	
68	13505	13908	14311	14715	15118	15521	15925	16328	16731	17134	404	
69	17538	17941	18344	18748	19151	19554	19957	20361	20764	21167	403	
10770	032 21570	21974	22377	22780	23183	23587	23990	24393	24796	25199	404	1.403
71	25503	26006	25409	268x2	27215	27619	28022	28425	28828	29231	403	
72	29534	30038	30441	30844	31247	31650	32053	33457	32860	33263	403	1 40.3
73	33666	34069	34472	34875	35278	35682	36085	36488	36891	37294	403	2 80.6
74	37697	18100	38503	18906	30300	39713	40116	40519	40922	41325	403	3 120.9
75	41728	42131	47534	42937	43340	43743	44140	44549	44952	45355	403	
76	45758	46161	46564	46907	47370	47773	48176	48579	48982	49385	403	5 201.5
77	49788	10103	50594	50997	\$1400	51803	52206	52609	53012	53415	403	7 282.1
78	53818	54221	54624	55027	55430	55833	56236	56638	57041	57444	403	
79	57847	58250	58653	59056	59459	59862	60265	.60667	61070	51473	403	9 362.7
10780	032 61876	62279	62682	63085	63488	63890	64293	64696	65099	65502	493	
81	65005	66307	66710	67113	67516	67919	68322	68724	69127	69530	403	
82	69933	70336	70738	71141	71544	71947	72349	72752	73155	73558	493	
83	73961	74363	74766	75169	75572	75974	76377	76780	77182	77585	403	
84	77988	78391	78793	79196	79599	80001	80404	80807	81210	81612	493	
85	82015	82418	82820	83223	83626	84028	84431	84834	85236	85639	403	
86	86042	86444	86847	87250	87652	88055	88457	88860	89263	89665	403	[402
87	90068	90470	90873	91276	91678	92081	92483	92886	93289	93591	403	1 40.2
88	94094	94496	94899	95301	95704	96107	96509	96912	97314	97717	402	2 80.4
89	98119	98522	98924	99327	99729	*00132	00534	*00937	*01339			3 120.6 4 160.8
10790	033 02144	02547	02949	03352	03754	04157	04559	04962	05364	05767	402	5 201.0
91	06169	06572	06974	07377	07779	08182	08584	08986	09389	09791	403	6 241.2
92	10194	10596	10999	11401	11803	12206	12608	17034	13413	13815	403	7 281.4
93	14218	14620	15022	15425								8 321.6 9 361.8
94	18241	18644	19046	19448	19851	20253	20655	21058	21460	21862	403	9 361.8
95	26288	22667	23069	23472	23874	24276	24678 28701	25081	25483 29506	25885	403	
96			27092	27494		1						
97	30310	30712	31115	31517	31919	32321	32723	33126	33528	33930	402	
98	34332 38354	34735	35137	35539	35941	36343 40365	40767	41160	41571	37952	403	
10800	033 42376	42778	43180	43582	43984	44386	44788	45190	45592	45905	402	
-				100			-		-	-		n n
N.	0	1	2	3	4	5	6	7	8	9	d.	P. P.
107 107 107	50" = 2° 55 60 = 2 55 70 = 2 55 80 = 2 55 90 = 2 55 00 = 3 0	20 30 40 50	1076 1077 1078 1079	= 0° 1 = 0 1 = 0 1 = 0 1	7 56 7 57 7 58 7 59	4.685 4.685 4.685 4.685	S 57290 57290 57289 57289 57289 57288	4.685 4.685 4.685	57880 57881 57881 57881 57882 57883 57884	7.716 7.717 7.717 7.718 7.718	98137 38517 78860 19165 59433 99664	log tang 7.716 98721 7.717 39105 7.717 7945 7.718 1975 7.718 6002 7.719 0025

Bauschinger+Peters 1910

8-stellig (Astronomie)

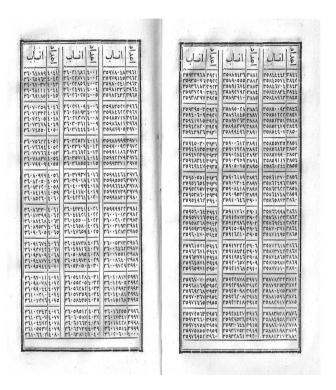
~DIN A4 360 Seiten

100.000 - 200.000 N6 (Seite 2 - 203)

20.000 - 100.009 N5 (Seite 204 - 363)

362*510= 184.620 Werte

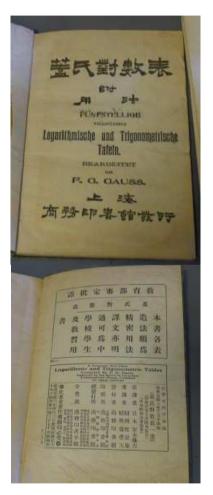
N.	L. 0	1	2	3	4	5	6	7	8	9		P.	P.
200	30 103	125	146	168	190	211	233	255	276	298			
201	320	341	363	384	406	428	449	471	492	514	11	22	2
202	535 750	557	578	600	621	643	664	685	707	728	2	4,4	
204	963	771 984	*006	*027	835 *048	*069	878 *og1	*112	920	942	3	6,6	1 6
205	31 175	197	218	239	260	281	302	323	*133	*154	4	8,8	8
206	387	408	429	450	471	492	513	534	555	576		11,0	
207	597	618	639	660	681	702	723	744	763	785		13,2	
208	806	827	848	869	890	911	93 I	952	973	994		17,6	
209	32 015	035	056	077	098	118	139	160	181	201		19,8	
210	222	243	263	284	305	325	346	366	387	408	-		20
211	428	449	469	490	510	53 I	552	572	593	613		2 I	2,0
212	634 838	654 858	675	695	715	736	756	777	797	818 *021		2	4,0
214	33 041	062	082	899	122	940	163	980	203	224		3	6,0
215	244	264	284	304	325	143 345	363	385	405	425		4	8,0
216	445	465	486	506	526	546	566	586	606	626	ı	5 1	0,0
217	646	666	686	706	726	746	766	786	806	826			4,0
218	846	866	885	905	925	945	965	983	*005	*025			6,0
219	34 044	064	084	104	124	143	163	183	203	223	1	9 1	8,0
220	242	262	282	301	321	341	361	380	400	420			
221	439	459	479	498	518	537	557	577	596	616	i .		19
222	635	850	674 869	694	713	733	753	967	792 986	811			3,8
224	830 35 025	044	064	889	102	928	947	160	180	*005		3	5,7
225	218	238	257	276	295	315	141 334	353	372	199		4	7,6
226	411	430	449	468	488	507	526	545	564	583			9,5
227	603	622	641	660	679	698	717	736	755	774			3,3
228	793	813	832	851	870	889	908	927	946	965			5,2
229	984	*003	*021	*040	*059	*078	*097	*116	*135	*154	- 8	9 1	7,1
230	36 173	192	211	229	248	267	286	305	324	342			18
231	36r	380	399	418	436	455	474	493	511	530			1,8
232	549 736	568 754	586 773	605 791	810	642 829	661 847	680 866	698 884	717 903			3,6
234	922	940	959	977	996	*014	*033	*051	*070	*088	-		5,4
235	37 107	125	144	162	181	199	218	236	254	273			7,2
236	291	310	328	346	363	383	401	420	438	457	- 1	5 r	9,0
237	475	493	511	530	548	566	585	603	621	639			2,6
238	658	676	694	712	731	749	767	785	803	822	. 1	8 I	4,4
239	840	858	876	894	912	931	949	967	985	*003	- 3	9 I I	6,2
240	38 021	039	057	975	093	112	130	148	166	184			17
241	382	220	238	256	274	292	310	328	346	364			1,7
242	561	399 578	596	435 614	453 632	47I 650	489 668	507 686	703	543 721			3,4
244	739	757	773	792	810	828	846	863	881	899		3	5,I
245	917	934	952	970	987	*005	*023	*041	*058	*076			6,8
246	39 094	III	129	146	164	182	199	217	235	252	- 8	5 1	8,5
247	270	287	305	322	340	358	375	393	410	428			1,9
248	445	463	480	498	515	533	550	568	585	602	3	8 1	3,6
249	620	637	655	672	690	707	724	742	759	777	- 2	9 I	5,3
250	794	811	829	846	863	881	898	915	933	950		_	
N.	L. 0	1	2	3	4	5	6	7	8	9		P. I	Р.
	- 1980	S. 4	. 68 55	7 T.	4.685			2280		. 68 55		4.6	8 5
	- 2040	4	. 68 55	7	4.685	59 0	39 ==	2340	4	. 68 55	7	4.6	8 5
0 35	- 2100 - 2160	4	. 68 55	7	4.68 5	59 0	40 -		4	68 55	Ž	4.6	8 5
	= 2220		. 68 55		4.685		41 —	A400	4				


Gauß (Gauss; Gausz) FG 1870

5-stellig (Schule)

~ DIN A5 18 Seiten (N4)

18*510=9.180 Werte


Logarithmen – Tafeln anderer Länder

מהמספר 1 ישוו כולם זה לזה ולהמספר 1 בעצמי, באשר שבהכפל 1 בעצמו תהיה המכפלה תמיד 1, כי $\cdot 1^{1} = 1^{2} = 1^{3} = 1^{1} = 1^{10} = 1^{100} = 1^{1} = 1$ \$ 26. המספר 10 בתור בסים משותף לכל המספרים שבעולם. אם נשים 8.26. ROBERT OF CRIFF CRU GROUNT GROWN CONTROL OF CRIFF CRU GROWN CRIFF שוים להמספרים המחויבים שכתשורה ד', $\mathbf{x}=0$;—1 ;—2 ;—3 ;—4 ;—5 ;—6 שורה ב $\mathbf{x}=0$;—1 ;—2 ;—3 ;—4 ,—5 ;—6 שורה ב $\mathbf{x}=0$;—1 ; 0,1 ; 0,001 ; 0,0001 ; 0,00001 ; 0,00001 ; 0,00001 והוא מהאמת לפי המספמים שנתבארו לנו עד הנה, והוא: אם נשים a שוה אל 10 אבל Two division for incomparis undiractive for their, thinks individual of the set of the $10^6 = .1000000 = 10 \times 10 \times 10 \times 10 \times 10 \times 10$, היותה 5 = 2 נאמ נשים 5 = 3 (אם נשים $10^{-1}=rac{1}{10^{1}}=rac{1}{10}$ = 0,1 י חידו -1=x אבל אם נשים וכן בכולם, והוא מבואר לפי 28 8 . והנה מצאנו כשתי השורות 🕻 , ג ששה מורים ממספרים שלמים מחויבים וששה מורים מכספרים שולמים משוללים, והנות הפורים להמספרים המכוונים תהתרום בהשורות ב. ד., וגם מצאנו כי 0 הוא המורה של המספר 1, אבל הלא יחברו לנו עוד המורים לכל ומספרים השלמים שכן 1 ובין 10, ואשר בין 10 ובין 100, ואשר בין כאה ובין אלף, ואשר בין אלף ובין ששרת אלפים, ואשר בין עשרת אלפים ובין כאה אלפים, ואשר בין כאה אלפים ובין מיליאן, וסמיליאן המשלה עד לכלי הכלות, וכן לכל השביים הקשנים כן דעה אהפים וכין שיליאן, וספיליאן השביים שבהשורה ד') יחסרון לנו עוד כנוים, השביים שבהשורה ד') יחסרון לנו עוד כנוים, ודעה לכל המשפרים השלמים הגיולים כן 1, והקשנים כן 10, יהיה המירה ניזול כן 0 וקפון כין 1, להמספרים הגדולים מעשרה וקפונים משאה ידרה המורה גדול מין 1 וקפון מין 2, ולהמספרים נים ולהפספרים שבין ולהפספרים המורה גדול מין 2 וקפון מין 3, ולהמספרים שבין ולהפספרים המין אלף ועשרת אלפים יהיה המורה נדול כן 3 ועשו כן 4. ולהמספרים שבין עשרה אלפים וכאה אלפים יהיה המורה נדול כן 4 וקמן כן 5, ולהמספרים שבין מאה אלפים וכיליאן יהיה המורה אלפים יהיה המורה נדול כן 4 וקמן כן 5, ולהמספרים שבין מאה אלפים וכיליאן יהיה המורה ישוו להמורים האטריים $(1, \frac{1}{16}, \frac{1}{16}, \frac{1}{106}, \frac{1}{106}, \frac{1}{106})$ ישוו להמורים האטריים האטריים אשר להשברים האטריים איטריים איט אשר להמספרים 1000, 100, 100, 100, אלא שלהמספרים השלמים המה מהייבים ובהשברים האמתיים

Hindiziffern der Araber des Ostens (Kein Autor; Stammt aus Constantinopel; 1846)

S. Pineto St. Petersburg 1871

F.G. Gauss: China

Logarithmentypen

http://www.math.uni-bielefeld.de/~sek/funktion/leit06.pdf

Alle Logarithmenfunktionen \log_a sind zueinander proportional und zwar gilt

$$\log_a x = \frac{1}{\ln a} \cdot \ln x \qquad \text{für alle} \qquad x > 0.$$

(Beweis: Setzen wir $y = \log_a x$, so ist $x = \exp_a y = a^y$. Demnach ist $\frac{1}{\ln a} \ln x = \frac{1}{\ln a} \ln a^y = \frac{1}{\ln a} y \ln a = y$.)

Für die speziellen Werte a=2,e,10 gibt es besondere Bezeichnungen für \log_a :

ld = log₂ der dyadische Logarithmus (oder Logarithmus dualis)

 $\ln = \log_e$ der natürliche Logarithmus $\lg = \log_{10}$ der gewöhnliche Logarithums

ld = lb = binärer oder Boolscher Logarithmus

In = Neperscher Logarithmus

lg = dekadischer Logarithmus

Warum ist der Einsatz von lg vorteilhafter als der von ln oder ld?

Der gewöhnliche oder Briggsche Logarithmus Ig wird durch die Mantisse bestimmt, die den Logarithmus der Ziffernfolge angibt. Die Kennziffer gibt die Anzahl der Stellen vor dem Komma an.

Beispiel2: lg 2 = 0,3010; lg 20 = 1,3010; lg 2000 = 3,3010; lg 0,2 = 0,3010 - 1

Vollständiger Logarithmus = Kennziffer + Mantisse

Logarithmentypen

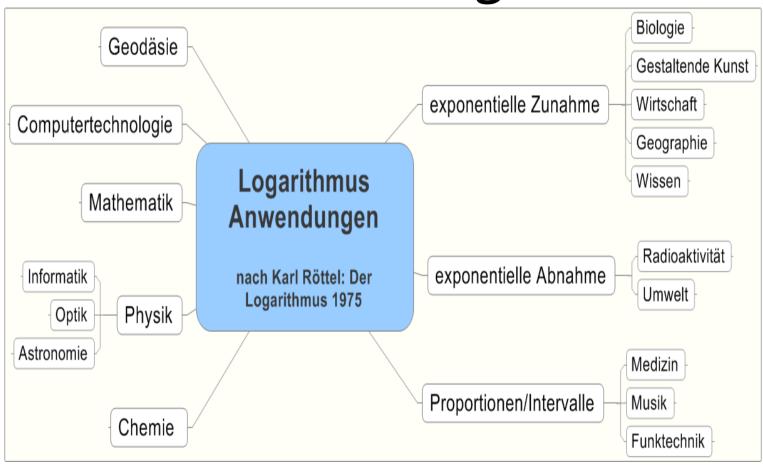
Fortsetzung

Antilogarithmen

Additions- und Subtraktionslogarithmen (Gaussische Logarithmen)

Diskrete Logarithmen

Cologarithmen


Logistische Logarithmen

Hyperbolische Logarithmen

Diurnal-Logarithmen; Ternär-Proportions-Logarithmen

Parabolische Logarithmen – Brendel; S. Günther

Logarithmen und ihre Anwendungen

Logarithmen – Anwendungen im Alltag

- Zinseszins; Inflation; Kaufkraft
- Raketengeschwindigkeit unter Berücksichtigung des gravitationsfreien Vakuums
- Richterskala Darstellung der Größenordnungsunterschiede, z.B. um wie viel ist ein Erdbeben der Stärke 9 stärker als eines mit der Stärke 8,25 ?
- (Bakterien) **Bevölkerungs-Wachstum**
- pH-Wert -- Mit wie viel Wasser muss ich wie viel Aquarium/Lösung verdünnen, um auf pH xy zu kommen?
- Rdioaktiver Zerfall
- Astronomie; Helligkeit der Sterne; Lichtintensität
- Medikamentenabbau
- Benfords Gesetz (dient zur Aufdeckung von Datenfälschung)
- Landvermessung (Geodäsie); Barometrische Höhenformel
- Akustik; Dezibel Wie laut (dB) ist eine Stimme im Vergleich zu einem Chor?
- Optometrie

.....

Rechenschieber von 1620 bis 1975

Zinseszins

http://www.math.uni-bielefeld.de/~sek/funktion/leit06.pdf

(1) Zinseszins. Beispiel: Der Anfangsbetrag von 200 EUR wird jährlich mit 5 % verzinst, nach einem Jahr besitzt man 200·(1,05) EUR = 210 EUR, im zweiten Jahr werden nun diese 210 EUR mit 5 % verzinst, also besitzt man am Ende des zweiten Jahres 210·(1,05) EUR, usw. Ohne Zwischenrechnung kann man notieren: am Ende des zweiten Jahres besitzt man 200·(1,05)·(1,05), also 200·(1,05)² EUR. Entsprechend besitzt man am Ende des t-ten Jahres 200·(1,05)¹ EUR. Die allgemeine Formel lautet demnach: Ist K₀ der Anfangsbetrag, und p der Prozentsatz, so besitzt man nach t Jahren den Betrag K(t)

$$K(t) = K_0 \cdot \left(1 + \frac{p}{100}\right)^t.$$

Es ist also

$$K(t) = K_0 \cdot \exp(\lambda \cdot t)$$
 mit $\lambda = \ln\left(1 + \frac{p}{100}\right)$.

Anders ausgedrückt: Es ist

$$e^{\lambda} = 1 + \frac{p}{100}$$
, also $\overline{\lambda} = e^{\lambda} - 1 = \frac{p}{100}$

Der Zinssatz $\frac{p}{100}$ ist die Zuwachsrate pro Zeiteinheit (was denn sonst?); die Formel $\lambda = \ln\left(1 + \frac{p}{100}\right)$ besagt gerade, wie man die momentane Wachstumsrate aus der Zuwachsrate pro Zeiteinheit berechnet.

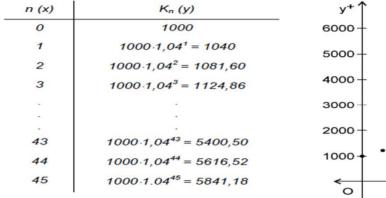
Zinseszins

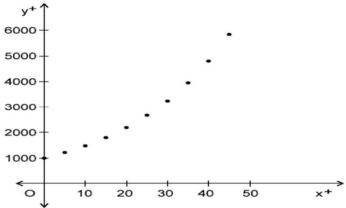
49) Ein Capital sieht zu 5 pEt. pr. A. Zinseszinsen 30 Jahre und wird eben so viel als 4000 M zu 4 pCt. pr. A. in 20 Jahren Wie groß ist es?

$$\begin{array}{c} \text{Mufising.} \\ \log x = \log 4000 + 20 \log \frac{184}{100} = 30 \log \frac{195}{100}. \\ \log \frac{104}{100} = 0.0170333 \times 20 \\ = 0.3406660 \\ + \log 4000 = 3.6020600 \\ \hline - 30 \log \frac{185}{100} = 0.6356790 \\ \hline 3.3070470 \end{array}$$

57) 8000 M ftehen 20 Jahre auf Binfeszinsen und werben eben jo viel als 10000 M bei 5 pCt. in 18 Jahren. Bu wie vielen pCt. ift bas Capital belegt?

$$\begin{array}{c} \text{Unitiing.} \\ \log x = \frac{\log 10000 + 18 \log \frac{105}{105} - \log 8000}{20} \\ \log 105 = 2,0211893 \\ \log 100 = 2 \\ \log \frac{105}{105} = 0,0211893 \times 18 \\ = 0,3814074 \\ \log 1000 = 4 \\ \hline - \log 8000 = \frac{3,9030900}{0,4783174} \\ \hline 0,0239159 \\ \text{Sierzu die Bahl giebt} = 105,66 \dots \\ \hline - 100 \\ = 5,66 \dots \text{pct.} \end{array}$$


Aus A.P.L. Claussen: Die Logarithmen und ihre Anwendung, Knapp Verlagsbuchhandlung Leipzig 1878


hierzu die Bahl giebt 2027,902 M.

Zinseszins

http://www.mathe-online.at/nml/materialien/SkriptumBlaha/KAP-09.pdf

Berechnet man die Beträge für die einzelnen Jahre und trägt die Werte in ein Diagramm ein, so ergibt sich folgendes Bild:

Wie bereits im Rahmen der Zinseszinsrechnung erwähnt, steigt der Wert des Kapitals nicht linear an; es ergeben sich immer größer werdende Differenzen zwischen den jährlichen Kapitalwerten.

Beispielrechnung:

log 1,04 = 0,01703334; 1,04 = 45 * log 1,04 = 45 * 0,017 = 0,766.500.27 num log 0,766550027 = 5,841.175

Inflation

http://www.math.uni-bielefeld.de/~sek/funktion/leit06.pdf

(2) Inflation. Verteuern sich Waren im Wert von 100 EUR innerhalb eines Jahres durchschnittlich um 3 EUR, so spricht man von einer Inflationsrate von 3 %. Betrachtet man einen durchschnittlichen Warenkorb im Wert von 200 EUR, so kostet er nach einem Jahr 200·(1,03) (= 206) EUR. Liegt die Inflationsrate im folgenden Jahr erneut bei 3 %, so kostet dieser Warenkorb nach zwei Jahren 200·(1,03)·(1,03) EUR. Allgemein gilt also: Ist P₀ der Preis eines durchschnittlichen Warenkorbs zum Zeitpunkt t = 0, und ist die Inflationsrate über Jahre hinweg konstant p %, so kostet dieser Warenkorb nach t Jahren den Preis

$$P(t) = P_0 \cdot \left(1 + \frac{p}{100}\right)^t,$$

also

$$P(t) = P_0 \cdot \exp(\lambda \cdot t)$$
 mit $\lambda = \ln\left(1 + \frac{p}{100}\right)$.

(Auch hier berechnen wir also λ aus der Zuwachsrate pro Zeiteinheit: die Zuwachsrate pro Zeiteinheit ist wieder $\frac{p}{100}$.)

Kaufkraftvergleich

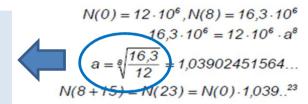
http://www.math.uni-bielefeld.de/~sek/funktion/leit06.pdf

Zu (2) und (3): Kaufkraft-Vergleich. Das Grundkapital $K_0 = 10~000$ EUR werde zwei Jahre lang festgelegt, der Zinssatz betrage 3 %. Im ersten Jahr sei die Inflationsrate 2 %, im zweiten Jahr 4 %. Dann gilt: $K(2) = 10000 \cdot (1,03)^2$ EUR = 10 609 EUR.

Entsprechend betrachten wir einen Warenkorb mit Preis $P_0 = 10~000$ EUR. Nach zwei Jahren zahlt man für diese Waren $P(2) = 10~000 \cdot (1,02) \cdot (1,04)$ EUR = 10 608 EUR. Man sieht: Die Kaufkraft des festgelegten Geldes hat sich (wenn auch nur geringfügig) erhöht.

Bei einem drartigen Kaufkraft-Vergleich betrachtet man für festes $K_0 = P_0$, welche der beiden Zahlen K(t), P(t) größer ist; man könnte also die Differenzfunktion K(t) - P(t) betrachten, aber Warnung: Auch wenn die beiden Funktionen K(t) und P(t) Exponentialfunktionen sind, so ist die Funktion K(t) - P(t) im allgemeinen keine Exponentialfunktion, sondern eben eine Differenz zweier Exponentialfunktionen (also zum Beispiel von der Form $e^{\lambda t} - e^{\lambda' t}$); es gelten für die Differenzfunktion nicht ganz so einfache Rechenregeln!

(Sei etwa der Zinssatz 3 %, die Inflationsrate 2 %, und der Anfangsbetrag sei $K_0 = P_0 = 10~000$ EUR. Dann ist K(1) - P(1) = 100, also 1 %, und dies ist auch gerade die Differenz der Prozentsätze. Für t = 2 erhält man dagegen K(2) - P(2) = 205, während die Multiplikation mit $(1,01)^2$ den Ausgangsbetrag 10 000 EUR nur um 201 EUR erhöht.)


Bevölkerungswachstum

http://www.mathe-online.at/nml/materialien/SkriptumBlaha/KAP-09.pdf

Beispiel:

Wie groß ist die Wachstumsrate in einem Land, das vor 8 Jahren 12 Millionen Einwohner hatte und heute 16,3 Millionen Einwohner zählt? Wieviele Einwohner werden es in weiteren 15 Jahren sein?

log a =
$$\frac{1}{8} * \log \frac{16,3}{12} = \frac{1}{8} * 0,13300636$$

num log a = 0,01662579
a = 1,03902452

An dieser Stelle stellt sich die Frage, mit welcher Genauigkeit für den Wert von a man nun die weitere Berechnung durchzuführen hat. Im folgenden sind die Ergebnisse für N(23) mit 3, 5 und 8 Nachkommastellen angeführt.

$$N(23) = 12 \cdot 10^6 \cdot 1,039^{23} = 28929361$$

 $N(23) = 12 \cdot 10^6 \cdot 1,03902^{23} = 28942172$
 $N(23) = 12 \cdot 10^6 \cdot 1,03902451^{23} = 28945062$

Wie zu ersehen ist, führen die kleinsten Änderungen bei den Nachkommastellen bereits zu großen Änderungen des Ergebnisses. Wie bei der Zinsenrechnung gilt daher auch hier, daß die Anzahl der Nachkommastellen der verwendeten Wachstumskonstanten der Anzahl der Stellen des Anfangswertes entsprechen sollte. Es empfiehlt sich, die Berechnungen mit allen Stellen, die der Taschenrechner zur Verfügung stellt, durchzuführen.

Lichtintensität

http://www.mathe-online.at/nml/materialien/SkriptumBlaha/KAP-09.pdf

Beispiel: Für Unterwasserfotos ist die Kenntnis der Lichtintensität L(t) in verschiedenen Tiefen t nötig. An der Oberfläche setzt man sie zweckmäßigerweise mit L(0)=100 fest. Messungen haben ergeben, daß mit jedem in die Tiefe getauchten Meter 7% der Lichtintensität verloren gehen. Wie groß ist die Intensität in 3,75m?

$$L = 0.93^{3.75} = 3.75 * \log 0.93$$

$$L(0) = 100, a = (1 - 0.07) = 0.93$$

 $L(t) = 100 \cdot 0.93^{t}$
 $L(3.75) = 100 \cdot 0.93^{3.75} = 76.2$

Die Lichtintensität in 3,75m beträgt 76,2%.

In diesen beiden Beispielen war die Wachstumskonstante kleiner 1. Dies entspricht einer Abnahme der Anfangsgröße bei Ansteigen der Veränderlichen. Es gilt also:

$$a > 1$$
 Zuwachs $0 < a < 1$ Abnahme

Viele Berechnungen, bei denen nur die prozentuelle Änderung interessiert (siehe letztes Beispiel), sind unabhängig von der Anfangsgröße durchführbar. In diesen Fällen kann man diese Anfangsgröße auch mit 100 (für 100%) ansetzen, um so einen Prozentsatz als Ergebnis zu erhalten.

Tablettenwirksamkeit

http://www.mathe-online.at/nml/materialien/SkriptumBlaha/KAP-09.pdf

Beispiel: Ein Patient schluckt auf Anweisung seines Arztes um 12 Uhr und um 16.30 Uhr je eine Tablette Aspirin. Jede dieser Tabletten enthält 400 mg Wirksubstanz, welche im Körper nach etwa 2 Stunden zur Hälfte abgebaut wird.

Berechnen Sie nach welcher Zeit sich nur noch 40 mg der Substanz im Körper des Patienten befinden und wann daher wieder eine Tablette eingenommen werden sollte.

$$\frac{1}{2} \cdot N(0) = N(0) \cdot a^{2}$$

$$a = \sqrt{0.5}$$

$$N(4.5) = 400 \cdot a^{4.5} = 84.089$$

Um 16.30 wird die zweite Tablette eingenommen und es ergibt sich ein neues N(0).

$$N(0) = 84,089 + 400 = 484,089$$

$$40 = 484,089 \cdot a^{t}$$

$$0,08262... = a^{t}$$

$$lg(0,08262...) = t \cdot lg(a)$$

$$t = \frac{lg(0,08262...)}{lg(0,70710...)} = 7,1944...$$

$$t = 7 h 11'$$

Die nächste Tablette muß um ca. 23.40 Uhr eingenommen werden.

Die Richter Skala – ein Maß für die Erdbebenstärke

Der angegebene Wert, die **Magnitude Local** (ursprünglich für Kalifornien) oder Größenklasse, leitet sich aus dem <u>dekadischen Logarithmus</u> der maximalen Amplitude (Auslenkung) im <u>Seismogramm</u> ab. Die Bestimmung der Magnitude erfolgt nach folgender Beziehung^[1]:

$$M_{\rm L} = \log_{10} \left(\frac{A_{\rm max}}{A_0} \right)$$

wobei $A_{\rm max}$ den maximalen Ausschlag in Mikrometer (µm) angibt, mit der ein kurzperiodisches Standardseismometer (Wood-Anderson-Seismograph) ein Beben in einer Entfernung von 100 km zum Epizentrum aufzeichnen würde. Der Bezug A_0 muss zwecks Korrektur gegebenenfalls auf die Verhältnisse für Beben in abweichenden Entfernungen angepasst werden. Dazu wird die Dämpfung der Amplitude berücksichtigt, die wiederum von der regionalen Geschwindigkeits- und Dämpfungsstruktur, vom Alter der Erdkruste und deren Zusammensetzung, von der Herdtiefe sowie von den Wärmeflussbedingungen abhängt. Streng genommen sind diese Kalibrierungsfunktionen nach Richter nur für Südkalifornien gültig und müssen für andere Regionen der Erde gesondert bestimmt werden [1]. Wegen des dekadischen Logarithmus bedeutet der Anstieg der Magnitude um einen Punkt auf der Skala einen etwa zehnfach höheren Ausschlag (Amplitude) im Seismogramm und näherungsweise die 32-fache Energiefreisetzung (exponentielles Wachstum) im Erdbebenherd. Eine Magnitude von zwei oder weniger wird als Mikroerdbeben bezeichnet, da es von Menschen oft nicht wahrgenommen werden kann und nur von lokalen Seismographen erfasst wird. Beben mit einer Stärke von etwa 4,5 und höher sind stark genug, um von Seismographen auf der ganzen Welt erfasst zu werden. Allerdings muss die Stärke über 5 liegen, um als mäßiges Erdbeben angesehen zu werden.

Aus: http://de.wikipedia.org/wiki/Richterskala

Die Richter Skala – ein Maß für die Erdbebenstärke

1935 entwickelte der US-Seismologen **Charles Francis Richter** (*1900, +1985) ein Verfahren zur Bewertung der Stärke (**Magnitude**) von <u>Erdbeben</u>. Als Maß für die Stärke wählte er den Ausschlag eines fiktiven Seismographen, der in einer Entfernung von 100 km vom Erdbebenzentrum (Epizentrum) aufgestellt ist. Tatsächlich sich ereignende Erdbeben werden dann auf diese Standardsituation umgerechnet.

Die Richter-Skala ist nicht linear sondern **logarithmisch zur Basis 10**: d.h die Stärke wächst exponentiell zur Basis 10. Die jeweils nächst höhere Stufe entspricht einer 10-mal größeren Erdbebenstärke: ein Beben der Stufe 4 z.B. ist 10/100/1000 mal so stark wie ein Beben der Stufe 3/2/1.

Rechenbeispiel 1:

Die Kernkraftwerke in Japan sind ausgelegt für eine **Magnitude** bis maximal **8,25**. Das Beben mit Magnitude 9,0 in Japan am 11.3.11 war 5,6 mal so stark.

109.0 / 108.25 = 109.0 - 8.25 = 100.75 = 5.6 (5.6 mal !! und nicht 9: 8,25 = nur 1,09 mal stärker)

Aus geophysikalischen Zusammenhängen folgt, dass die bei Erdbeben **freigesetzte Energie** sogar **exponentiell zur Basis 32** wächst: Von einer Stufe zur nächsten entlädt sich jeweils 32 mal mehr Energie: Die freigesetzte Energie z.B. auf Stufe 4 ist 32/32²/32³, also 32/1024/32768 mal so groß wie die Energie auf Stufe 3/2/1.

Rechenbeispiel 2:

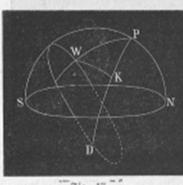
Die Kernkraftwerke in Japan sind ausgelegt für eine Magnitude bis maximal **8,25**. Das Beben mit Magnitude 9,0 in Japan am 11.3.11 setzte 13,5 mal so viel **Energie** frei.: $32^{9,0} / 32^{8,25} = 32^{9,0-8,25} = 32^{0,75} = 13,5$

Die Richter-Skala ist zwar prinzipiell nach "oben offen". Mehr als der Wert 10 ist aber nicht realistisch: bei dieser Stärke müsste ein ganzer Kontinent aufreißen. Bei Stärke 100 würde rein rechnerisch soviel Energie freigesetzt, dass die ganze Erdkugel zerbrechen müsste.

Aus: http://www.agenda21-treffpunkt.de/lexikon/Richter-Skala

Astronomie

§ 45.


131) Riel hat eine öftliche Länge von 28° 15" und eine nördliche Breite von 54° 21'; Wien hat eine öftliche Länge von 34° 2' 30"

und eine nörbliche Breite von 48° 12' 36". Wie weit ift Kiel von Wien entfernt? (Fig. 47.)

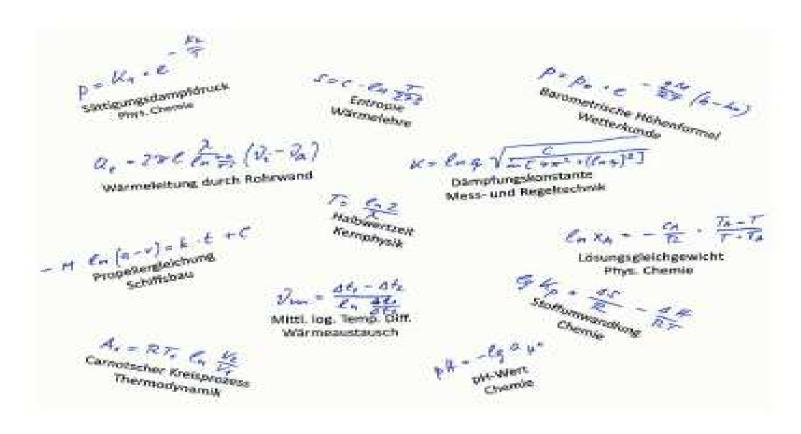
Auflöfung. W und K bezeichnen bie beiben Stabte. PK = 900 - 540 21' =

$$P W = 90^{\circ} - 48^{\circ} 12^{\circ} 36^{\circ} =$$

In bem fpharischen Dreied W P K find also 2 Seiten und

3ig. 47.

ber eingeschlossene Binkel bekannt, und die dritte Seite WK (a) soll gesucht werden. Die Aufgabe wird nach der Formel in Aufgabe 91 gelöst, entweder mit Hilse der Baußischen Logarithmen oder durch Sinführung eines Hilsewinkels.


$$\begin{array}{c} \cos a = \cos b \cdot \cos c + \sin b \cdot \sin c \cdot \cos A \cdot \\ \log \cos b \cdot (35^{\circ} \ 39') = 9,9098728 - 10 \\ \log \cos c \cdot (41^{\circ} \ 47' \ 24'') = 9,8725014 - 10 \\ \log a' = \overline{9,7823742} - 10 \\ \log \sin b \cdot (35^{\circ} \ 39') = 9,7655436 - 10 \\ \log \sin c \cdot (41^{\circ} \ 47' \ 24'') = 9,8237365 - 10 \\ \log \cos A \cdot (6^{\circ} \ 2' \ 15'') = 9,9975844 - 10 \\ \log b' = \overline{9,5868645} - 10 \end{array}$$

Einsatz der Gaussischen Logarithmen für die Winkelbestimmung mit trigonometrischen Logarithmen

```
-186 - \\ \log a' = 9,7823742 - 10 \\ \log b' = 9,5868645 - 10 \\ A = 0,1955097 \\ 0,1955 = 0,4096890 \\ 9 = 54,99 \\ \hline 7 = 4,277 \\ \hline B = 0,4096959 \\ \hline 9,5868645 - 10 \\ \log \cos a = 9,9955604 - 10 \\ a = 8^{\circ} 10' 43'' \\ \hline 1^{\circ} = 111 \text{ km. } \text{ Die Entfernung beträgt also} \\ 907,826 \text{ km.} \\ \\
```

Aus A.P.L. Claussen: Die Logarithmen und ihre Anwendung, Knapp Verlagsbuchhandlung Leipzig 1878

Logarithmische Formeln aus den Naturwissenschaften

Wozu brauchen wir noch Logarithmen?

Aus: www.rechenschieber.org RS Brief 20, 2009

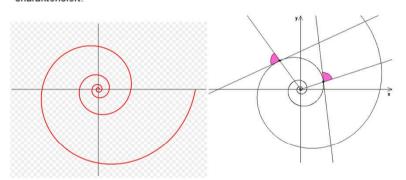
Werner H. Rudowski

Logarithmen – Vorkommen in der Natur

- Logarithmische Spirale
 - Nautilus Schnecke
 - Sonnenblume
 - "Nachtfalter fliegt logarithmische Spirale"

me-lrt.de/a21-nachtfalter-laterne-mondlicht-flugbahn

Ein Nachtfalter orientiert sich bei seinen nächtlichen Flügen am Stand des Mondes. Er fliegt geradeaus, wenn das Mondlicht unter einem konstanten Winkel α in sein Auge fällt.


- Weber-Fechner-Gesetz
- Musik ("Rechnen mit Tönen")
- Wachstum generell (In = logarithmus naturalis)

Logarithmen – Vorkommen in der Natur

Nautilus Schnecke

http://de.wikipedia.org/wiki/Logarithmische_Spirale

Eine logarithmische Spirale ist eine Spirale, bei der sich mit jeder Umdrehung um ihren Mittelpunkt (Zentrum, Pol) der Abstand von diesem Mittelpunkt um den gleichen Faktor verändert. Jede Gerade durch den Pol schneidet die logarithmische Spirale stets unter dem gleichen Winkel. Wegen dieser Eigenschaft spricht man auch von einer gleichwinkligen Spirale. Durch diese Eigenschaft ist die logarithmische Spirale eindeutig charakterisiert

Formeln zur Logarithmischen Spirale				
Funktion	$r(\varphi) = a \cdot e^{k \cdot \varphi}$, $\varphi(r) = \frac{1}{k} \cdot \ln\left(\frac{r}{a}\right)$			
Steigung	$\frac{1}{r} \cdot \frac{\mathrm{d}r}{\mathrm{d}\varphi} = k = \tan(\alpha)$			

Sonnenblume mit 34 und 55 Fibonacci-Spiralen

Schnitt einer Nautilus-Schale

r = Radius φ = Winkel (Bogenmaß) a = Konstante k = Steigung

Animierte Spiralen: http://demonstrations.wolfram.com/LogarithmicSpiral/

Logarithmen – Vorkommen in der Natur

 Weber-Fechner-Gesetz der Sinne (Zusammenhang zwischen Reiz und Empfindung)

http://www.st-stephan.de/gymnasium/faecher/fachschaften/physik/facharbeiten/weber-fechner-1.pdf

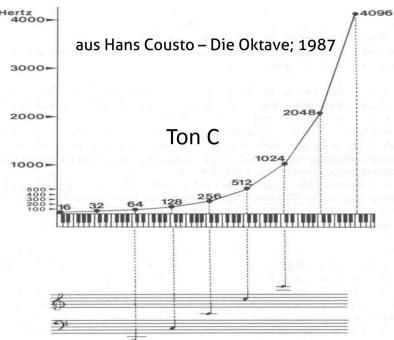
Wenn man nun R_0 definiert als den absoluten Schwellenwert für einen Reiz, also die Intensität, die nötig ist, um überhaupt etwas zu empfinden, folgt daraus:

$$E\left(R_{0}\right)=k\cdot\ln R+C=0 \quad \text{beziehungsweise} \qquad C=-k\cdot\ln R_{0}$$
 Aus (II) eingesetzt in (I) ergibt sich
$$E\left(R\right)=k\cdot\ln R-k\cdot\ln R_{0}=k\cdot\ln\frac{R}{R_{0}}$$

(II)
Weber-Fechnersches
Gesetz

Die Empfindungsgröße E(R) ist demnach berechenbar, wenn man die Reizschwelle R_0 bestimmt und k geeignet definiert hat. So war es erstmals möglich, Empfindungen objektiv miteinander zu vergleichen².

Aus dieser Formel ist auch ersichtlich, dass eine Verdoppelung des Reizes nicht zu einer Verdoppelung der Empfindung führt, sondern dass der Zuwachs der Empfindungsgröße aufgrund der Logarithmusfunktion mit wachsendem Reiz immer geringer wird. Oder umgekehrt: Gleiche Empfindungs-


abstufungen (Empfindungsdifferenzen) ΔE sind proportional zum Logarithmus der Reizverhältnisse. Der zugrunde liegende Logarithmus muss dabei nicht zwangsläufig der zur Basis e sein, sondern kann auch zu jeder anderen Basis gebildet werden, da alle Logarithmusfunktionen sich jeweils nur in einem konstanten Faktor unterscheiden.

"Wenn sich die Empfindung in gleichen Schritten erhöhen soll, dann müssen die entsprechenden Reize in einem konstanten **Verhältnis** erhöht werden, d.h. in einer geometrischen Reihe."

Eine logarithmische Kurve/Tabelle

Silbermann_Orgel StGeorgenRöthe September 2012 StBenno Kalender

Stahlguth_Orgel Maria Laach November 2012 StBenno Kalender

Obertöne und Klaviertastatur

Die Graphik zeigt die Beziehung der Oktavobertöne zu deren Frequenzwerten. Die waagerechte Achse zeigt den Bereich von 8 Oktaven an, entsprechend der Klaviertastatur. Der Abstand von Oktavton zu Oktavton ist stets konstant. Die senkrechte Achse zeigt die entsprechenden Frequenzwerte. Die Relation ist eine Exponentialfunktion.

Modernes Orgelpositiv Tafel31 in Orgelbau W_Adelung 1972

Antworten zu Logarithmen

- Seit wann gibt es Logarithmen? Michael Stifel 1544
- Wann wurde die erste Logarithmentafel veröffentlicht?
 - 1614, berechnet von dem Schotten John Napier
- Was sind Logarithmen und was haben sie bewirkt?
 - Logarithmen sind Rechenhilfen
 - Sie haben das Rechnen mit großen Zahlen erheblich vereinfacht (Multiplikation => Addition; etc.)
- Welche Rechenhilfsmittel enthalten Logarithmen?
 - Logarithmentafeln, Rechenschieber, Taschenrechner
- In welchen Bereichen des Lebens spielen die Logarithmen immer noch - eine Rolle ?
 - Kaufmännisch; Wissenschaftlich; Technisch
 - In der Natur (logarithmus naturalis mit der Basis e)

Logarithmen – Quellenauswahl

Titel	Autor	Verlag	Jahr
Die Zahl e – Geschichte und Geschichten	Eli Maor	Birkhäuser	1996
Katechismus der Logarithmen	Max Meyer	J.J. Weber	1898
Die Logarithmen und ihre Anwendung	A.P.L. Claussen	G. Knapp	1878
Lehrbuch der Logarithmen	A. Kleyer	Julius Maier	1884
Logarithmen für Jedermann – Elementare Einführung mit Hinweisen auf höhere Gesetzmässigkeiten Ernst Bindel; Verlag freies Geistesleben			1954
Fünfstellige logarithmische und trigonometrische Tafeln nebst einer größeren Anzahl von Hilfstafeln	Adolf Greve	Carl Meyer	1897
Österreichische Mathematiker um 1800	Gerlinde Faustmann	ÖKK, Wien	1992
http://de.wikipedia.org/wiki/Logarithmen			2012
http://www.britannica.com/EBchecked/topic/346146/logarithm			2012
http://www.rechnerlexikon.de/artikel/Cyclopedia_of_logarithms			2012
http://www.rechenschieber.org/			2012
Mathematik für Alle (Mathematics for the Million)	Lancelot Hogben	Büchergilde	>1937
Geschichte der Elementarmathematik 4. Auflage Band 1	Johannes Tropfke	De Gruyter	1980
Der Logarithmus – Einführung und Anwendungen	Karl Röttel	Bayerischer Schulbuch V.	1975 + 1979
Logarithmentafeln in vielen Sprachen – seit 1614	viele	viele	

www.rechnerlexikon.de

www.rechnerlexikon.de/artikel/K%FChn_/_Weiss_Rechnen_wie_damals_2012

$$log(o*u*t) = ?$$

Danke für die Aufmerksamkeit!