Small Adders Part 1
- Small Adders
- Small Adders Part 1: Acknowledgements, Types of Adders
- Small Adders Part 2: Taxonomy
- Small Adders Part 3: Dial Column Adders, Keyed Column Adders
- Small Adders Part 4: Dials in a Row, Concentric Dial Adders
- Small Adders Part 5:The Kummer Adder, Chain Input, Miscellaneous
|
1 Small Adders Part 1
Bob Otnes, Palo Alto, CaliforniaVortrag, gehalten beim 2. Greifswalder Symposium zur Entwicklung der Rechentechnik 12. - 14. September 2003, erschienen in Girbardt/Schmidt 9-2003
Im Rechnerlexikon mit freundlicher Genehmigung des Verfassers
I am in the process of writing a book on "small adders", a term to be defined in the talk that follows. One of the reasons for giving this paper is that I need help in the form of "reality checks". While any book can end up being controversial to some, I would prefer to have my book, if it is ever finished, have most of such problems worked out in advance. I will mainly be talking about adders in the United States in the 19th and early 20th centuries. A large number of small adders were patented in the US in the 19th century: perhaps as many as 150. And this does not count the ones that were not patented. Of course, not all of those that were patented made it to market. On the other hand, there were some that were not patented that were manufactured. What caused all of this activity? I believe that some of the causes were as follows:
- Even by the year 1900, most American lived on farms and had relatively poor educations. My maternal grandfather, George Flower, was born on a farm in the state of Michigan in 1867. He had only two years of education. He was apprenticed and became a house carpenter. His brother Frank had six years of schooling, and could do arithmetic. George and Frank formed a partnership to do construction work; George was in charge of the outside part and Frank did the calculations and booking. Simple arithmetic was sufficient for this.
- The industrial revolution began early in the 19th century. As the century wore on, this undoubtedly caused a need for better and more calculation and better financial planning. Also, the calculators themselves changed: In America the Young Adder (1848) was entirely wood; the early Webb Adder (1868) was made of wood and brass; the later Webb (1889) had a cast frame and steel inner parts; the Bohnam and Schram (1905) was made from stamped steel.
- The combined need for more calculation and a relatively uneducated public perhaps created the need for aid in doing arithmetic. As noted, many such aids appeared.
As previously mentioned, one of the earliest American calculators is the one patented by Young. It was made entirely of wood, and is a simplification of the much earlier design by Perrault. This slide bar type mechanism was common.
1.1 Acknowledgements
I am not going to include a formal bibliography in this paper. However, I do want to mention some of the many people who directly have helped me, or whose books have been used in my studies. These include, in no particular order, Dr. Peggy Kidwell of the Smithsonian Institution, Thomas Russo, George C. Chase, Conrad Schure, the people at the Arithmeum and at Paderborn, F. Diestelkamp, the translation of the book by "Martin", Dr. Michael R. Williams, Maurice d'Ocagne, Jean Marguin, etc.
Patents: I have put quite a few US Patent numbers into these notes. If you would like to get free copies of the patents, the URL for the US Patent Office for this purpose is as follows:
http://patft.uspto.gov/netahtml/srchnum.htm
Put this URL into whatever browser you use, and hit return. A page will come up with a location to insert the patent number of interest. Input it and hit return, and it will come back saying that you can only get an image or images. Click on the box that says "Images", and it will return the first page of the patent. The difficulty comes in printing these images. You must have a TIFF plugin as the pages are in that format, and many systems can display TIFF, but cannot print it. Plugins can be obtained on the internet, many of them as freeware.
1.2 Types of Adders
There many different types of small adders. The following is an attempt to categorize them:- Counters. These are registers that count or measure. Odometers in cars for totaling mileage are an example, as are the various meters found in the home that record the amount of electricity, gas or water used. These are more or less continuous. Related, but not quite the same are the unit counters such as the Veeder-Root Counter. Such a device has a lever or button, that when pressed adds a single unit to the total. While this category of devices could be used for adding, such devices are relatively inconvenient for anything other than small sums. The meter type devices are very unsatisfactory as adders. This category is considered only for completeness.
- Tallying Devices. These are advanced versions of the unit counter. In these, adding can be done with more than one unit at a time, but only in the rightmost position. Also, the first position may register 50 or even 100 units, making it possible to increase a tally in large steps. A salesperson in a lumberyard would use one of these to tally how many board feet of lumber there are in a sale. Again, the difference between this device and a true adder is that tallying adders do not permit the direct use of the higher order dials: all the input is done from the rightmost dial. The reason for this is that the type of carrying from dial to dial does not permit reliable input from the other dials.
- True Adders. These are machines that permit a value to be added at any position, and have a method or mechanism for properly propagating the carry from one position to the next. The term adder hereafter will be applied to both tallying and true adding mechanisms. The adders being considered fall into five different classes:
- Dial adders. These machines are directly related to that of Pascal, and include such modern American varieties as the Webb, Lightning, Addometer, etc. They have one or more dials and the dials are not necessarily the same size.
- Perrault or slide bar adders. Slide bar adders such as the Locke have movable horizontal bars that are used to perform the addition. The Kummer adders are similar, except that the slides are vertical with a hook-shaped slot at the top of the slide.
- Rack or step adders. These have a series of vertical bars with step-like indentations on them.
Pulling the appropriate step with a stylus towards the user causes the number on that step to be added to dials above the racks, and any necessary carrying operations to be performed. - Chain and band adders. Similar to the rack devices, except a continuous chain is substituted for the rack.
- Key adders. These are column adders operated by keys, usually nine in number.
- Screw and spiral adders. These are tallying adders for doing large totals where convenience of clearing is not required. Important characteristics of the adders are: • How the carrying of results is done. Options are visual, stop action, automatic or stored energy automatic. • How subtraction is implemented. In particular, is it done directly or using the complement method, which is cheaper, but more time-consuming and difficult?
- How the machine is cleared. Does the user have to clear each position to zero one at a time, or is there a method for clearing all positions simultaneously? Each such feature adds to the convenience of the machine. Unfortunately, it also adds to the cost and complexity. The early machines are less likely to have these enhancements, while at the end of the era, they were standard on the better quality adders.
\begin{matrix} & 24 \\ & 19 \\ = & 43 \end{matrix}
we start from the right adding 4 and 9 which yields the result 13. We write a 3 under the column and carry the 1 standing for 10 to the top of the next column. The carry of 1 in this case might actually be written at the top of the column for later check, or it might simply be retained in the mind in one's own short-term memory. In any event, what seems so simple and natural when one is doing the problem mentally becomes a major difficulty when the process is implemented mechanically. Witness the problems that Pascal had with his design. Carrying was done in a variety of methods:
- Visual, such as with the Bassett.
- Stop hitting, as with the Perrault and Kummer types.
- User powered carry, as in the Lighting.
- Stored energy carry, as in the Calcumeter.
1.3 Complementary Subtraction
The operation of complementary subtraction replaces the expression
0 | -> | 9 |
1 | -> | 8 |
2 | -> | 7 |
3 | -> | 6 |
4 | -> | 5 |
5 | -> | 4 |
5 | -> | 3 |
6 | -> | 2 |
8 | -> | 1 |
9 | -> | 0 |
This is often printed directly on the adder in some form. Goldman's ArithMachine is an eight-decimal digit adder with carrying. It performs subtraction by complementary arithmetic. Input to the machine is accomplished by using a special stylus to pull down on the small horizontal bars shown in the middle of the machine. Each bar is part of a chain; as the bar is pulled down, it adds into the display in the column directly above it. The specific value added corresponds to the large number printed on either side of the starting row. As an example, suppose we desire to calculate 1234567 - 123456 = 1111111 using complementary subtraction as on the ArithMachine. That is,
x | = | 1234567 |
y | = | 123456 |
99999999 - y | = | 99876543 |
x + (99999999 - y) | = | 1234567 + 99876543 |
= | 101111110 |
In the ArithMachine, the leftmost "1" is lost, dropping o_ the left end. This drop of a high order "one" carry happens with all such machines when doing this kind of subtraction. Finally, we would add the required 1 into the right column to get the result 01111111, which is the correct answer. At first glance this seems complicated. However, with use it becomes straightforward. The ArithMachine (and many other adders) have aids to memory on them. There are two sets of numbers on the machine, one set on each side. Each set consists of two columns of ten numbers. In each case, the large numbers are for adding and are the same. The small numbers on the left set are for subtraction in the leftmost 7 columns. The rightmost set are employed only for subtracting in column one: they already have the extra "1" added into them.
Clearing Mechanisms Clearing a machine before starting is done "manually" with most simple machines. The operator starts on the right and clears the machine by adding into the first column whatever number brings it to zero, then proceeding to the the next column on the left, and so going across the whole machine. Actual clearing mechanisms seem to have appeared first in France with Dr. Roth's and the Thomas de Colmar Arithmometre. These in turn may have been influenced by the reset capability in stop watches.
- Small Adders
- Small Adders Part 1: Acknowledgements, Types of Adders
- Small Adders Part 2: Taxonomy
- Small Adders Part 3: Dial Column Adders, Keyed Column Adders
- Small Adders Part 4: Dials in a Row, Concentric Dial Adders
- Small Adders Part 5:The Kummer Adder, Chain Input, Miscellaneous
1.4 Copyright
Alle Rechte beim Verfasser
Please do not copy or reprint
Dieses Material ist Bestandteil eines Buches von Bob Otnes, das voraussichtlich noch im Jahre 2004 erscheinen wird.
Diese Seite ist geschützt. Sie darf nur
vom Autor oder einer beauftragten Person verändert werden.
Falls Sie mit dem Inhalt nicht einverstanden sind,
machen Sie bitte einen Eintrag bei der Diskussion und schicken dem Autor eine Mail.